FOREST RESOURCES

OF

DADRA \& NAGAR HAVELI
(UNION TERRITORY)

FOREST SURVEY OF INDIA
CENTRAL ZONE
NAGPUR
1991

Contents

FOREST RESOURCES

OF

DADRA \& NAGAR HAVELI (UNION TERRITORY)

PBEEACE

This report containg the resulte of inventory carried out by the Central Zone of Forest Survey of India in the Union Territory of Dadra and Nagar Haveli.

The field work was carried out in two etages, firstly in the month of October, 1985 and then in JanvaryFebruary 1988 . A total of 62 plots were inventoried in the entire territory apread over 19935.42 ha forest area. The inventory was followed by the wood consumption studies.

The inventory results reveal that the union territory has an average growing stock of $52.995 \quad \dot{m}^{3}$ per heotare. The crop composition is mainly of teak and mixed species. The regeneration of important forest speoies is absent in about 80X of the area. The grazing incidence too is quite hith. Same is the case with fire incidence. The atock of bemboo is almost insignificant. I hope this report will prove useful to the Forest Department of the Union Territory.

The report has been compiled by Shri Anil Biala, Junior Technical Assistant under the guidance of Shri S.C. Gupte, IFS., Joint Director, Foreat Survey of India, Central Zone, Nagpur.

MAP OF INDIA
 SHOWING
 SURVEY AREA

INDEX

4.4.2	Enumerated tree volume	21
4.4 .3	Plot volumes	21
4.5	Stand tables	21
4.6	Stock tableg	21
4.7	Sampling error	21
CHAPTER - V INVENTORY RESULTS - AREA		
5.0	Area	23
5.1	Forest area by land covers	23
5.2	Forest area by crop compositions	24
5.3	Area by crop compositions and topography classes	25
5.4	Area by crop compositions and slope classes	25
5.5	Area by crop compositions and soil-depth classes	26
5.6	Area by crop compositions and top-height classes	26
5.7	Area by crop compositions \& size classes	27
5.8	Area by crop compositions \& canopy layers	27
5.9	Soil erosion	28
5.10	Regeneration status	28
5.11	Fire-incidence	28
5.12	Grazing-incidence	28
5.13	Bamboo ocourrence	29
	CHAPTER - VI INVENTORY RESULTS - GROWING STOCK	
6.0	General	30
6.1	Total no. of stems and stems per hectare; Stratum : Teak	30
6.2	Total no. of stems and stems per hectare; Stratum: Miscellaneous	31
6.3	Total volume and volume per hectare;	31
	Stratum: Teak	31
6.4	Total volume and volume per hectare;	
	Stratum: Miscellaneous	32
6.5	Combined growing stock in terms of stems	32
$6.6 .$	Combined growing stock in terms of volume	33
	Standard error	34
G R O N N G G S TOCK TA B L ES		
	Stems ' $0 B 0$; Stratum: Teak	35
$6.1 \mathrm{~B}$	Stems per hectare; Stratum: Teak	36
6. 2 A	Sterns 'GXO'; Stratum Miscellaneous	37
6.2 B	Stems per hectare; Stratum: Miscellaneous	38
6.3 A	Volurae ' $6 \times \infty$ '; Stratum Teak	39
6.3 B	Volume per hectare; Stratum: Teak	40
6.4 A	Volurae 'gab'; Stratum: Miscellaneous	41
6.4 B	Volume per hectare; Stratum: Miscellaneous	42
6.5 A	Combined growirg stock; Stems '806'	43

6.6.A Combined growing stock; Volume, '000' 44
.6.A Combined growing stock; 45
6.6 B Combined growingCHAPTER - VII HOOD CONSUMPTION STUDIES
7. 0 General 47
7.1 Population of Dadra \& Nagar Haveli 47
7.2 Methodology 47
7.3 Estimated per capita annual woodconsumption by income groups49
7.4 Estimated per capita mnnal wood consumption irrespective of incorae 50
7.5 Estimation of present wood consumption and future projection 50
7.6 Projected requirements of timber and firewood for the year 1991 52
AN NEXURES
Annexure I Glossary of local names with corresponding botanical names of common trees, herbe, shrubs, grasses and bamboos found in Dadra and Nagar Haveli 53
Annexure II Bibliography 54

CHAPTER-I

INTRODUCTION

1.0 GENERAL;

The tract dealt with in this report comprises of two enclaves - (i) Dadra and (ii) Nagar Haveli. The area is administered by the Union Govermment and is thus called union territory. This territory remained under the portuguese colonial rule from the years 1783 to 1954 . It was finally liberated on 2nd August, 1954 by the local nationalist workers. During the period from 1954 to 1962, the administration of Dadra and Nagar Haveli was run by the selected village panchayat members. In the year of 1962, it was declared as union territory under the Dadra and Nagar Haveli Act, 1961 and was integrated with the Indian Union. Consequently, the free Dadra and Nager Haveli administration was sueceeded by formal statutary Administration headed by an Administrator.

Silvassa, the capital town of the territory is 185 kms . from Bombay and 142 kmg . from Surat. The territory is bounded on various sides as follows:

1. North : Pardi and Dharampur talukas of Valsad district of Gujarat state.
2. East : Dharampur taluka of Valsad district of Gujarat state.
3. South : Dahariu arid Jawahar talukas of Thane district of Maharashtra state.
4. West : Dahariu taluka of Tharie district of Maharashtra state and Umargaon taluka of Gujarat slate.
5. 1 SITUATION AND BOUNDARIES;

The territory dealt with in this report is situatgd in, the western part of India between the parallels of 20° 00' ard $20^{\circ}-25^{\circ}$ of North, latitude and between the meridian $72^{\circ}-50^{\prime}$ and $73^{\prime}-15$, of East longitude.

1.2 ADMINISTRATIVE UNITS AND AREA:

The territory comprises of two enclaves viz; Dadra and Nagar Haveli, The former consisls of three villages and the fater 68 villages with the capital town of Silvassa which is 'a mon-muncipal town and is administered by a village Parichayat. This territory is a single district, single taluka territory with Silvasisa town fs its state, distorict and
taluka headquarters. Total geographical area of the territory is 48882 ha. spread over two parts separated by a small territory of Gujarat state. The territory is administered by ten Group Gram Panchayats spread all over.

The total forest area under this territory is 19935. 42 ha. of Reserved foreste. Apart from these 440 ha. of road side plantations and canal plantations are added as Protected forests but these protected forests are not included in this survey.

The whole of the forest area is administered by a single Forest Division with headquarter at Silvassa.

1.3 CLIMATE AND RAINFALL:

The climate of the territory is moderate and generally healthy in winters. During sumer the forests are unbearably hot especially in the months of April ard May. The rainy season is normally from June to September. The territory receives an average rainfall of 2000 to 2500 mm . and average no. of rainy days are 65 to 80 per year. The humidity in Dadra and Nagar Haveli varies from 30 percent in May to 85 percent in August. The months of October and November are warm, cloudy and humid and are followed by pleasant spell of cold winter which laste for a short period upto February.

1.4 TOPOGRAPHY

General topography of the territory is hilly and undulating except in the central, northern and western parta. The area forms the foothills of the Western Ghats (the Sahayadri hills) which gradually merge with the plains of Gujarat in the west and the north-west. Northern and southern parts of the territory are more hilly with highest altitude being 433 m . above MSL situated in the southern part of the territory. These hills are not very steep. In the northern parts of the territory the higheat point is 294.13 m . above MSL. Towerds the west and north-west the terrain is easy and gentle.

1.5 DRAINAGE:

The terrain is intersected by the river Damanganga and its tributories. This river rises at a distance 64 kms . from the sea coast in the ghats and drains into the Arabian sea at the port of Daman. The river is seasonal and floods in the morssoon season. Important tributories of the river Damanganga in the tract are: i) Dongavkhadi, ii) Sakartond, iii) Kenai, iv) Ababar in the scuth, v) Piparia, vi) Nar and vii)Kolak in the north-east. A major irrigation project viz: Demanganga Irrigation Project is rearing corapletion ir the territory near village Sailly. The reservior of this project is situated in Valsad district of Gujarat state but
the main caral originating from the dam site traverses a distance of 40 kras . through the territory creating a vast potential for irrigation.

1.6 GEOLOGY ROCK AND SOIL:

The geological strata of the tract belongs to Deccan Trap formations which are mainly made up of basic volcanic rocks of basaltic composition. The composition of the soil is a varying mixtures of clay and murrum. Depth of the soil depends upon the degree of disintegration and extent of erosion. The soil is clayey in the central and western parts. Soils in the northern and southern parts of the territory are shallow and murumm on account of shifting cultivation practised in the past. On the slopes of hilly areas and the plateaus the soil is shallow and rocky and supports stunted vegetation. The soil in the forest areas is devoid of humus content. The absence of humus is mainly due to its collection and burring in Rabs by the tribals.
1.7 LAND USE PATTERN:

The total geographical area of the territory is 48882 ha. and ita land use classification is as under:

TABLE SHOWING LANDCOVER PATTERN IN THE U.T. (AREA IN HA.)

Total geogra- phical area	Forest	$\begin{aligned} & \text { Irriga } \\ & \text {-ted } \end{aligned}$	$\begin{aligned} & \text { Unirri } \\ & \text {-gated } \end{aligned}$	$\begin{aligned} & \text { Culti- } \\ & \text { vable } \\ & \text { waste } \end{aligned}$	Balance area not available for cultivation.
48882	$\begin{array}{r} 19935.42(\mathrm{RF}) \\ 440.00(\mathrm{PF}) \end{array}$	509	235	11	277768.58

1.8

SOCIO-ECONOMLC CONDITION:
The population of Dadra and Nagar Haveli is 103676 persons as per 1981 census of which 52515 were males and 51161 were females. Rural population of the territory is 96762 . The only urban area i.e.Silvassa town has population of 6814 persoris. Of the total population 78.82% belong to Scheduled Tribes and just 1.97\% belong to Scheduled Caste. Thus, the territory is predominated by tribals. The main tribes of the tract are:

1. Drodia
2. Dubla iricluding Halpati
3. Kathodi
4. Kokna
5. Koli Dor including Kolgha
6. Nayaka
7. Varli.

Looking towards the predmanantly tribal population of this union territory, most of the developmental programmes of the Adrinigtration are aimed at tribal welfare. Education facilities are provided in all the villages (numbering 70).

Power supply is available to most of the villages even in remote areas. Rice, wheat and ragi form the main staple food of the people.

Agriculture is the main occupation of the people. The main agricultural crops are paddy, ragi, small millets and pulses. Of the total cultivated area only 506 ha are irrigated but on completion of the Damanganga Irrigation Project, approximately 7000 ha area will come under irrigation.

The territory being predominantly tribal, the Administration is implementing various developmental schemes aiming mainly to train them in modern methods of cultivation. Development in the field of animal husbandry is also remarkable with establishment of a well equipped veterinary hospital at Silvasea and two veterinary aid centres at Dapoda and Khanvel.

Many voluntary orgenisations are playing aignificant role in the socio-economic welfare of the tribale. In various developraental schemes launched by the Administration members of Scheduled Tribes are given preference. They are also being encouraged to start cottage or small scale industries to improve their standard of livine.

The table below gives at a glance the important atatistics (as per 1981 census) pertaining to the union territory of Dadra and Nagar Haveli:-

Population 1,03676
Population density (per sq. km.) 211
Sex ratio (no. of females per 1000 males) 974
Literacy rate
26.67

Percentage of urban population to total
population 6.67
Percentage of Scheduled Caste population to total population
1.97

Percentage of Scheduled Tribe population
to total population
78.82

No. of occupied residential houses 18183
No. of villages: Inhabited 78
Uninhabited 1
Nu. of towne 1

As regards transport and commurication facilities, 83 percent of the villages comprising about $9 \varnothing$ percent of rural population are served with this facility. Most of the villages are linked by fair weather roads. The roads in the territory are well maintained and useable throughout the year. In addition, there are forest roads many of which cannot be used durirag rainy season. The capital town of Silvassa is well connected by roads with the important comercial towns in the adjaining states such as Vapi, Valsad, Surat in Gujarat and Dahanu, Bombay etc. in Maharashtra. Vapi in Gujarat is the nearest railway station.

1. 10 FOREST RRODUCE AND FOREST BASED INDUSTRIES:

Important forest produces of the territory are timber, fuel wood, ballies, tendu leaves, mahua flowers and seeds, etc. With the setting up of industrial estates within the territory, the pressure on the forests has increased considerably. Apart from teak which is the most demanded timber species, other species like haldu, bio and tivas are also in great demand. In fact inadequate supply of timber has caused a phenomenal increast in ils prive. Timber and fuel was usually extracted from Silvassa and Kharivel areas.

Vapi is the nearest market, 20 kms from Silvassa ard 40 kms fram Khanvel. Forest produces are transported to Vapi by road and from there to various places by rail (if required) or by road. With the imposition of moratorium on fellinge, the needs of timber are being met by importing the timber from Vapi or other places. Govt. departments are Generally supplied their required quota of timber from the forests of the territory itself.

Ars importarit forest based industry manufacturing 'katha' from khair trees was established in the territory about twerty years back and it is still working.

CHAPTER - II

THE EORESTS

$2 . \emptyset$ GENERAL DESCRIPTION:

The forest cover is spread over an area of 19935. 42 a ha of the territory. It forms an important economic of Dadra and Nagar Haveli. The forest area is spread over 58 villeges. These forests are owned by the Government and have been declared Reserved Forest. Forestry plantations along road-side and canal-side have been declared Protected Forest since the year 1982. Teak ard khair are the two predominent species found in the tract. The clear felled areas have been pianted with teak and khair to meet the local demand of timber and fuel. Emphasis is also being laid on road-side and canal-side plantatiors. The Administration of Dadra and Nagar Haveli has placed a moratorium on commercial felling of timber since the year 1982 and it is still continuing.

2.1 FOREST TYPES:

As per the classification of Champion and Seth, the forests of this territory fall under GROUP 3BC2: SOUTH INDIAN TROPICAL MOIST(MIXED) DECIDUOUS FOREST but the floristic composition of the crop indicates that it tends towards SEMIMOIST DRY TEAK type foresta. The reason for this may be attributed to presumably less moisture retention capacity of the soil. The composition of the forest crop is as follows:-

Tectona grandis (Teak), Terminalia crenulata (Sadad), Adina cordifolia (Haldwan), Ougeinia oojeinensis (Tiwas), Albizzia lobbek (Siras), Erythrina indica (Pangara), Lagerstraemia parviflora (Bondar), Garuga pinnata (Kekad), Madhuca latifolia(Mahua), Bridelia retura (Asan), Acacia catechu (Khair), Acacia ferruginea (Kante), Pterocarpus margípium (Bio), Albizzia procera (Killai), Sterculia urens (Kandol), Anogeissus katifolia (Dhawda), Salmalia malabarica (Sawar), Holoptelea integrifolia (Papda), Terminalia belerica (Bahadas), Grewia tiliaefolia (Dhamam), Dalbergia latifolia (Shisham), Dillenia pentagyra (Karmal), Mangifera indica (Amba), Gmelina arborea (Sivan), Syzygium cuminii (Jambul), Lannea cormandelica (Modad), Careya arborea (Kumbhio), Diospyros melanoxylon (Timru), Wrightia tinctoria (Kudi), Emblica officinalia (Amla), Butea monosperma (Khakhu), etc.

The quality of the forest crop as well as its condition are not uniform throughout the tract. Quality is slightly better in areas having deeper soils with less biotic interference. The forgsts of the territory have been degraded to varying degrees. The factors affecting this degradation are site/locality, intensity of biotic
interference/pressure and extent of protective measures. The degradation at many places is quite visible yet some places can be reclaimed through plantations and other conservation measures.

BAMBOO:
strictus In addition to varicus tree species, Dendrocalamus strictus (Manvel bamboo) appear in damaged condition alongwith Bambusa arundinacea (Katas bamboo) along nalas. Bamboo crop is in a state of degeneration due to reckless and uriabated hacking. The tract underwent gregarious flowering during late fifties but areas were not reestablished adequately. Although Bamboo clumps are noticed in the growing stock they are devoid of young and useful culms.

GRASSES:

Though this survey was confined exclusively to the egtimation of Erowing stock of trees, yet following grass species were found in the territory during the course of this survey:

1. Spodiopogor rhizophus - Polad,
2. Cymbopogon martinii - Dab,
3. Vetiveria zizanoides - Valchond, and
4. Chloris incompleta - Gandheri.
2.2 FOREST MANAGEMENT:

Ketpirig in view the objectives of forest management following working circles are proposed to be constituted in the working plan under preparation.

1. KAIN HORKING CIRCLE:

It comprises all the forest areas of the territory except those put under the Nature Conservation Forking Circle, wild life senctuary and deer park. This working eircle has been created to rehabilitiate the degraded forests and to give total protection to the worked areas for ten years.
2. NATURE CONSERVATION WORKING CIRCLE:

This working circle covers the following areas:

1) Catchment area of Damanganga river falling within the territorial limits of Dadra and Nagar Haveli.
ii) Forest areas between the industrial estates of Khadoli and Masat, and
iii) Slopes of Athal hills.

This working circle has been created to give permanent protection to the ecologically endangered area. It also includes areas of a proposed wild life sanctuary.
3. WILD LIFE MANAGENENT (OVERLAPPING) WORKING CIRCLE:

This working circle extends over entire forest area "of the territory including the groposed area of 715 ha for a wild life sanctuary in Umber Kui and Bonta areas.
4. FODDER DEVELOPMENT (OVERLAPPING) FORKING CIRCLE):

This working circle extends over all the forest areas except those under Nature Conservation Working Circle. Special attention will be paid to the grass bearing areas of some villages.
5. MINOR FOREST PRODUCE (OVERLARPING) WORKING CIRCLE:

This working circle overlaps the entire forest area in the territory. It aims at collection of minor forest produce in the territory.

6. COMMUNITY FORESTRY HORKING CIRCLE:

This working circle extends over all the nonforestry areas in the territory available for production forestry namely for raising fuelwood, small timber and fodder required by the local population for their domestic consumption.

7. TRIBAL WELFARE FORKING CIRCLE:

This working circle extends over entire tribal habitat of the territory. The object is to create ecological awareness amonget the tribals and to uplift their socioeconomic condition so that the conservation of environment becomes meaningful and beneficial to the tribal population.

2.3 DAMAGE TQ FORESTS:

Following agencies are mainly responsible for causing damese to the forests:

1. HUMAN INTERFERENCE

Growing population ard rapid industrialisation in and around Dardra \& Nagar Haveli has taken its toll of destruction of forests. Even during Portuguese regime forests were subjected to over-exploitation for commercial purposes. Grarst of various rights and privileges to local tribals has also caused tremendous domage to the forest weal th of the territory. Adjoining areas of Maharashtra and Gujarat states have relatively sparse forests which has obviously resulted in the increage of biotic presaure on the territorial forests
beyond their capacity. Many industrial estates have mushroomed right amidst dense forest areas. The construction activities of Damanganga Irrigation Project in the territory have also resulted in the influx of people from outside the territory which too has resulted in pressure on the local forésts. Over all phenomenal increase of human population of the territory has also influenced the demand rendering the forests more vulnerable to injuries caused by man. The plucking of leaves for rab burning and for thatching of houses is also andesirable practise of the local tribals.

2. ILLICIT FELLING:

The illicit felling in the territory is attributatle to many factors such as (i) absence of good forest in the adjoining states, (ii) escalating prices of timber and fuel wood, (iii) exploitation of poverty ridden tribals by illicit wood-cutters, (iv) inadequate number of check posts, \& (V) development of gond net-work of roads etc.
3. FIRE:

The fires are quite common in the territory and cause considerable damage to the forest regeneration. The tribalg are responsible for initiating such fires for collection of minor forest produce and practicing rab burning ir their agricultural fields.

2.4 RIGHTS AND CONCESSLQNS:

The forest department has framed rules reganding free and concessional grant of timber viz;
a. Free grant of timber for construction of houses;
b. Frese grant of timber for repair of houses;
c. Free grant of timber for agricultural implements; and
d. Concessional erant of timber.

2.5 WILD LIEE:

Owing to heavy degradation of forests, the wild life habitat has been badly affected. Many wild animals have disappeared from the territory. Whatever have managed to survive are likely to become extinct unless immediate appropriate protection and mariagement is ensured. Loss of forest wealth in the adjoining states has also contributed to rapid disappearance of wild life in the territory. A working circle has been constituted to effect better wild life wild life sanctuary is proposed areas of the territory. A and Bont and Bonta villages over a proposed area of 715 ha. Such positive measures are likely to improve the present state of wild life in the territory.

CHAPTER - III
 RESQURCES SURYEY METHODOLOGY

3. 0 OBJECTIYES QF THE SURYEY:

The objectives of this resources survey were :

1. To collect information on distribution of forest with regard to various parameters such as topography altitude, aspect, slope, soil-depth etc.
2. To collect various informations on crop data including origin of crop (whether the crop is of seed origin, coppice origin or a plantation), its composition, height, size, quantum of regeneration, injury to crop, fire incidence, grazing incidence, presence of weeds and grasses etc.
3. To collect various informations under bamboo oceurrence such as species found, their density, quality, quantity and regeneration ete.
4.

To estimate the areas falling under various land covere.
5. To estimate the growing stock of trees and bamboos existing in various land covers.
6. To determine the plantation potential of the land which is poorly stocked or unstocked.
7. To focus attention of the planners and forest officials on the critical aspects and condition of the forests for timely remedial measures and for future planning.
3.1 AREA CONSIDERED FOR SURYEY:

For the purposes of this inventory the forest areas falling in the union territory of Dadra and Nagar Haveli were considered. In order to decide the forest areas, recent Survey of India toposheets on 1:50, 000 scale were used. All those areas which were demarcated by double dotted forest boundaries on these toposheets and were having green wash within or outside such boundaries, were taken as forest areas for undertaking this inventary survey.
3.2 INVENTORY DESIGN:

A common invertory design for the whole organisation was evolved in consultation with the Central Statistical Organisation (Govt. of India) for undertaking inventory work in variguts parts of the country. The design
enviaseged the survey of two randomly selected plots each of 0.1 ha. area in each grid of $21 / 2^{\prime} \times 21 / 2^{\prime}$ (latitudes and longitudes) on the toposheet of $1: 50, \varnothing 00$ scale. A grid bounded by $21 / 2^{\prime} \times 21 / 2^{\prime}$ latitudes and longitudes covers about $2 \varnothing$ sq.km. area in which 0.2 ha. area is actually sampled. Thus the sampling intensity of the survey comes to ©.01\%. The mettiod of marking the plot centre on the map within a grid is as follows:-

Two sides (X - axis and Y - axis) of a grid were measured in millimeters. The length of these sides was divided by 0.6324 cm (side of 0.1 ha . square plot) for the maps on $1: 50,000$ scale. The quotient so obtained was rounded up. Let the numbers (quotient) for X axis be X and that for Y-axis be y. Actually the number x gives the no. of plots that may fall along X-axis and number y gives the no. of plots that may fall along Y-axis. The product $x X$ y gives the total number of sample plots that may exist in a grid of $21 / 2^{\prime} x 2^{\prime} 1 / 2^{\prime}$. Out of these plots ($x \times y$), one plot has to be selected on the basis of random numbers and the second one with the help of the first plot which will be expleined in next para. For the selection of ist plot, one set of three random numbers was selected from random numbers table. If the random number aelected for X-axis was less than x (quotient for X-axis), then it was retained and if the random number was more than x, then it was divided by x and the remainder was retained. Similar exceroise was done for Y axis also by.taking next three digit set of random numbers. The figure (remainder) so obtained was multiplied by the side of the plot i.e. 0.6324 mm for $1: 50,090$ scale map so as to get the actual co-ordinates of the let plot. The plot no. 1 of all the grids was marked on the map taking south- west corner of respective grid as origin. The distance along X-axis was measured towards east and along Y axis towards north. Thus the centre of plot no. 1 was marked on the map at crossing of the two co-ordinates.

For marking the centre of second plot of each grid, the plot centre of 1 st plot and centre of $21 / 2^{\prime} \times 2 \quad 1 / 2$, Erid were joined and the line extended to the same distance in oppoaite direction beyond grid centre. The point so reached was the plot centre of the second plot. The layout of $21 / 2^{\prime} \times 21 / 2^{\prime}$ grid and the plots are chown in diagram rics. 1 and 2. All such plots were marked on the toposheets and they were visited only if they were falling in areas covered by green wash or by double dotted forest boundaries on $1: 50,000$ mapsheets. Since the number of samples available from two plats in a grid were not adequate, for additional Pairs of plots-were-laid-in the same grids in the similar manner so as to-get total 6-sample.plots in the entire

DIAGRAM-I
DIAGRAM SHOWING
IDENTIFICATION OF GRIDS ON 1:50,000 OR 1:63,360 SCALE TOPOSHEETS

DIAGRAM SHOWING LAY-OUT OF PLOT IN $2122^{\prime \prime} \times 2^{1} / 2^{\prime}$ GRID
' X ' a ' y ' ARE THE DISTANCE ALONG
' x ' 8 " Y ' AXES WITH SW CORNER AS
THE ORIGFN

As stated earlier, the survey was confined to the forest areas only. All the forested plots of the survey area of Dadra and Nagar Haveli, duly marked on toposheets, were allotted to the crew deputed for this inventory work. The crew had drawn up its programe of halts at some convenient places in order to tackle maximum plots from those camps. The plots marked on the toposheets had to be exactly located on the ground with the help of some conspicuous features which could be identified on the map as well as on the ground. Usually the following features were selected for this prupose:

1. Bench mark.
2. Triangulation point.
3. Village or road trijunction.
4. Old bridges and culverts.
5. Old temples, mosques and churches.
6. Crosaing of rail tracks with roads, streams, rivers etc.
7. Confluence of rivers or streams and junction of roads.
8. Prominent bends in roads, rivers or streams.
9. Old ponds and wells.
10. Springs.
11. Prominent topographical features in hilly refion such as spurs, knolle etc.
12. Mile stones or kilometer stones on the road side.
13. Pillarg of international, inter state or inter-district boundaries and those of forest areas etc.
14. Prominent bende of boundary etc.

After locating the above reference points on the ground as well as on the map, the bearing and diatance from referenoe point to the plot centre were marked. This dietance was traversed at the bearing calculated for the plot using Silva Compass and distance mensured with a nylon rope/tape etc. While using compass the magnectic declination as indicated on the concerned toposheet was also taken into account. Similarly, for distance measurement the slope correction was applied to get the actual horizontal distance.

On reaching the plot centre, a square plot was leid out by taking distance of 22.36 m . in all the four directions (north, south, east and west) from the plot centre. Thus an exact plot of 0.1 ha. area (having each side of 31.62 m and diagonal of 44.72 m .) was laid out horizontally after making corrections for the slopes measured with the help of Blumleiss hypsometer along 4 semi-diagonals (north, south, east and west).

3.4 FORMAT FOR DATA COLLECTION:

After laying out the plots in the field, various data were collected in the following field forms in codified form (except in Plot Approach Form wherein information was
collected in descriptive manner) as described in the field manual issued to the crew for the purpose of data collection. This facilitated the transfer of data on punch cards, sonsistency checking of collected data and finally in processing the data on electronic computer at a later stage. The various field forms used in this survey are :-

1. Plot Approach Form.
2. Plot Description Form.
3. Plot Enumeration Form.
4. Sample Tree Form.
5. Bamboo Enumeration-cum-Clump Analysis Form, and
6. Bamboo Height Form.

1. RLQT APPRQACH FQRM:

As the title indicates, the form is a record of approach to the plot centre from the field camp of a crew. It is filled in by the Crew Leader as he proceeds from his camp to some conspicuous feature called reference point existing near by the plot. The distance and bearing from this well defined reference point to the plot centre were also recorded. The exact location of plot certre, i.e. bearing and distance from two trees to the plot centre is also noted together with the time of departure from camp, time taken in various studies and time of arrival in the camp. This form helps the check crew or any other person to relocate the plot easily when required. The data on this form is recorded in descriptive manner with a neatly drawn sketch showing the location of reference point and the plot centre.

2. PLOT DESCRIPTION FORM:

This form is designed for recording qualitative description of 2 ha area around the plot centre. The information regarding administrative units, legal status, land use, topography, soil, vegetation, bamboo regeneration, biotic influence, accessibility and plantation potential etc. were recorded. The data was recorded in codified form and was transferred to punch cards for further computer analysis. The stratification of area and classification of growing stock was done on the basis of these descriptions only.

3. PLOT ENUMERATION FORM:

In this form, all the trees with dia 10 cm . and above and all the bamboo clumpe occurring in whole of 9.1 ha sample plots were recorded by species. This was meant for computing total growing stock existing in all such sample plotsip and firially in whole of the survey area which was estimated on the basis of these sample plots. This form helpe in distributing the grwing stock in terms of stems and volume by various parameters like species, diameter classes, forest types etc.

Detailed information regarding the speciers, diameter at breast height (over bark), height of tree, clear bole, bark thickness, dominance and defects etc. of all the trees occurring in north-west quadrant of each of the sample plots, were recorded in this form. On the basis of these parameters (i.e., height, diameter and clear bole), volume of plots was calculated

5.
 BAMBOO ENUMERATION-CUM-CLUMP ANALYSIS FORM:

In this form, the data of individual culms occurring in the selected clumps bearing S. Nos. 1,9,17,25,33......etc. (i:e., the first and every eighth clump appearing in Plot Enumeration Form) was recorded. Thus, the information about age, soundness, size and condition etc. of the culms of the above clumps was obtained and analysed in various columns of this form. This information gave the position of total bamboo stock by clump sizes occurring under various conditions.

6.

BANBQQ WEIGHT EORM.:
This form was designed fror crilfecting data to determine the green weight of bamboos of different species and sizes and further for establishing relationship between green weight and dry weight of bamboo culme. The data was recorded in respect of two selected culme from each dia. class, i.e., 2 to $5 \mathrm{~cm}, 5$ to 8 cm , and 8 cm and the green woight of three 50 cm long sub-samples, each taken from the bottom, the middle and the top portions of the culms were recorded. These three sub-samples are dried in air and finally in the oven in order to remove their entire moisture contents and to eet their air dry weight. This facilitates to establish relation between the green weight and the dry weight of culms by epecies and sizesant ko know the total growing stock of bamboos in terms of weight.

3.5

FIELD HORK:
The field work of union territory of Dadra and Nagar Haveli was completed in two stages. Only onefield party carried out the survey. It consisted of one Dy.Ranger and two Fieldmen. Initially inventory of 29 sample plots was undertaken in the month of October, 1985 with camps at Silvasa and Khanvel. After completion of inventory, Wood Consumption Studies were also undertaken to assess the quantity of wood being eonsumed in the territory for various purposes. Second visit was in the month of Janury February, 1988 during which 33 additional plots were tackled. Thus total sample plots tackled in the territory were 62.

EIELD CHECKING;
The checking of the surveyed plots was done by the Joint Director himself. Mistakes found, if any, were rectified in consultation with the crew leader present during his visit to the forests.
3.7 MAPS AND PLOTS:

The Survey of India toposheets which were used during the inventory and the no. of plota tackled in each of them are mentioned below indicating the scale of the toposheet and the year of survey of the toposheet:
$\left.\begin{array}{lllll}\text { S. No. Toposheet No. } & \begin{array}{l}\text { Scale of } \\ \text { toposheet }\end{array} & \begin{array}{l}\text { Year of survey } \\ \text { of toposheet }\end{array} & \begin{array}{l}\text { No. of } \\ \text { plots } \\ \text { invento- }\end{array} \\ \text { ried }\end{array}\right]$

3.8 CONSISTENCY CHECKING OF EIELD FORMS:

On completion of field work, the field forms containing the inventory information of 62 plots were manually checked in the zonal office as per the field manual and coding instructions meant for the purpose. Inconsistency noticed in theve forms was removed after discussing the specific point with the crew leader who had undertaken the survey. All thege field forms were finally forwarded to the Data Processing Unit at headquarter, Dehradun, for computer analysis and processing the data for deriving various kinds of informations.

CHAPTER -IV

DATA PROCESSING

4.0

SAMPLING DFSIGN.
Grids were marked at $21 / 2$, $\mathrm{f} 21 / 2^{\prime \prime}$ interval in the forest areas of Dadra and Nagar Haveli (union territory). Initially two plots were laid in each grid. These plots were square in shape each having an ares of 0.1 ha. The first plot was laid out at random and the second was linked to the first in the opposite quadrant at an equal distance from the grid centre. Since the number of samples available from two plots in a grid were not adequate two additional pairs of plots were laid in the same grids in the similar manner so as to get total 62 sample plots in the entire territory.
4.1 DATA:

The basic data of inventory survey was collected in the Plot Description Form, Plot Enumeration Form, Sample Tree Form, Bamboo Enumeration Form. The volume data from felled trees was not collected since a moratorium on felling of trees was in force in the territory. The field forms were precoded so that the field data could easily be trangferred on to the punch cards.

No. of cards punched for the filled-in field forms were as under:

	Card design		Ne. of carda.
1.	Plot description	\ldots	62
2.	Plot enumeration	\cdots	193
3.	Sample tree	151	
4.	Bamboo enumeration	\cdots	16
5.	Bemboo weight data	\cdots	16
	Total	\ldots	---18

4.2 DATA PROCESSING

The data processing involved the following operations:-
i) MANUAL PROCESSING;

The field forms received in the Nachine Data Management Unit of Forest Survey of India, Dehradun were checked with the list supplied by the central zone. Entries of the field forms were made in the register regarding the number of field forms relating to each map-sheet, grids and plots. The total number of cards required to be punched
under each card design were also estimated and recorded in the register for future references. Job numbers, card design and left hand zeros wherever missing were filled up in the field forms to avoid mistake during punching.

Each entry in the field forms was checked for consistency in the data. The main checks applied were the range check for the maximum and minimu value of the codes and logical check for inter-relation between the entries for two or wore fielde.

Listing taken out of the data loaded on the magnetic tape/disk were checked to ensure complete loading and proper sequence of data.

Sampling statistics were calculated and checked with the computer output to see if the calculations on couputer were correct. These involved volume of enumerated tree from local volume equation, flot volume and standard error etc.

Intermediate and final computer output were checked for consistency and relevance of results. The area tables were also prepared manually.

ii) RROCESSING ON UNIT RECORD MACHINE;

The data of field forms were punched on cards with the help of punching machine. The punched data cards were verified using card verifier to detect punching mistakes. The verified cards were sorted out for proper input to the computer.

iii) RROCESSING QN ELECTRONIC COMPUTER;

The punched, verified and sorted data on cards were loaded on magnetic tapes/disks and listings of the loaded data were taken out to check the desired sequence.

The volume of each enumerated tree was estimated with the help of local volume equation of the species.

The contribution of the volume of each enumerated tree towards per hectare volume was derived and stored in a treefplot volume file for further processing.

The growing stock tables by species and diameter class under each crop composition were prepared from treel plot volume file. Standard error of the estimated growing stock in each crop composition was calculated.

The data of this eurvey was processed on System 332 of National Forest Computer Centre of Indira Gandhi National Forest Academy, Dehradun.

This computer had the following configurations:

1.	Memory	256 K bytes	
2.	Card reader	1	
3.	Tape drives	2	
4.	Disk drives	2	
5.	Line printer	Terminals	4

4.3

AREA.
The entire area of 19935. 42 ha Reserved forests was surveyed for the estimations. On the basis of total number of sample plots falling in these areas, weightage of each sample plot was calculated. This factor was used to derive area by different land use classes. The total area was classified by land use covers given in table no. 5.1. The area falling in land use dense tree forest, moderately dense, open forest, young plantations of forestry species and young erop of natural and artificial regeneration was considered as tree vegetated cover and was classified by crop composition classes on the basis of the number of sample plots in crop compositions viz; Teak and Miscellaneous. The details of which are given in table No. 5.2

The total area under each crop composition was claseified by topography, slope, soil depth, top height, size class, canopy layer, and estimated plantable area in the Govt. forest land. All area details by these parameters have been explained in Chapter V of this report.
4.4 YOLUNE ESTIMATION;
4.4.1 YOLUNE EQUATIONS;

The data was not collected from freahly felled trees. The sample tree data wan inadequate to develop local volume equations. Therefore, locel volume equations developed for various species for adjoining Surat Circle in Gujarat State were used for estimating the enumerated tres volume.

The following local volume equations were used:
1.

Acacia catechu (114)

$$
\begin{aligned}
& V=-0.048108+5.873169 \mathrm{D}^{2} \\
& \text { Adina cordifolia }(127) \\
& \sqrt{V}=0.215680+4.329878 \mathrm{D}-1.504977 \sqrt{\mathrm{D}}
\end{aligned}
$$

3. Anogeissus latifolia (122)

$$
/ \sqrt{V}=0.357373+2.43044 \theta \mathrm{D}+0.794626 \sqrt{\mathrm{D}}
$$

4.

Lagerstroemie parviflora (115)

$$
\sqrt{V}=0.027366+3.668008 \mathrm{D}-0.718475 \sqrt{\mathrm{D}}
$$

5.

Dalbergia latifolia (134)

$$
\sqrt{v}=-0.144504+2.943115 \mathrm{D}
$$

6.

Diospyros melanoxylon (95)

$$
\sqrt{V}=-0.184139+2.892723 D
$$

7.

Garuga pinnata (150)

$$
\sqrt{V}=0.053434+3.530350 D-0.810548 \sqrt{D}
$$

8

> Lannea coromandelica (174)

$$
\sqrt{V}=0.404153+5.555051 D-2.545525 \sqrt{\mathrm{D}}
$$

9.

$$
\begin{aligned}
& \text { Mitragyna parvifolia (156) } \\
& V / D^{2}=1 \varnothing .086934-1.744274 / D+0.099768 / D^{2} \\
& V=\varnothing . \varnothing 90768-1.744274 \mathrm{D}+1 \varnothing . \varnothing 86934 \mathrm{D}^{2}
\end{aligned}
$$

10.

$$
\begin{aligned}
& \text { Ougenia oojeinensis } \\
& \sqrt{\mathrm{V}}=0.468152+1.403410 \mathrm{D}+1.425555 \sqrt{\mathrm{D}}
\end{aligned}
$$

11.

\int Pterocarpus marsupium (102)

$$
\sqrt{V}=0.175068+4.598243 D-1.506562 \sqrt{D}
$$

12.

Tectona grandis (925)

$$
\sqrt{V}=-\varnothing .405890+1.881580 \mathrm{D}+\varnothing .987375 \sqrt{\mathrm{D}}
$$

13.

Terminalia belerica (107)

$$
V=0.074706-1.430082 D+10.181871 D^{2}
$$

14.

$$
\begin{aligned}
& \text { Terminalia crenulata (215) } \\
& \sqrt{V}=-\varnothing .203947+3.159215 \mathrm{D}
\end{aligned}
$$

15.

$$
\begin{aligned}
& \text { Wrightia tinctoria (162) } \\
& \sqrt{\mathrm{V}}=0.050294+3.115497 \mathrm{D}-0.687813 \sqrt{\mathrm{D}}
\end{aligned}
$$

16. Rest of species (628)

$$
N / \sqrt{\mathrm{V}}=-0.153873+2.724189 \mathrm{D}
$$

(Note: Figures in brackets against the name of the species denote the number of trees on which the equation is based).

4.4.2 ENUMERATED TREE VOLUME;

The volume of each enumerated tree was estimated from the breast height over bark diameter of the tree and the local volume equation used for the species. The estimated tree volumes were converted to per hectare and stored in tree/plot volume file with speices code, tree diameter, parameters of Plot Description Form, per hectare stems and volume in the sample plot. The file helped in the tabulation of results by species and diameter for different crop compositions.
4.4.3 PLOT YOLUMES:

The estimated volume of each enumerated tree in a plot when added up over the whole plot provided the plot volume. It was converted to per hectare basis and stored in the tree/plot volume file. The per hectare plot volumes were used to estimate volume under different classes of desired parameters. The plot volumes were also used to estimate the average volume per hectare (cu.m.) and the sampling error of growing stock in each crop composition.

4.5 STAND TABLES:

The estimates of tree/plot volume file were utilised to classify the trees by apecies, diameter and crop composition etc. Estimates of the number of stems per hectare and total stems by species and diameter classes were obtained for each crop composition. These are given in the computer out put originally.

The number of atems per hectare and total stems over all crop compositions were also derived and are tiven in the table nos. 6.1 A \& B, 6.2 A \& B and combined growing stock in terms of stems is given in table no. 6.5 A \& 6.5 B.

4.6 STQOCK TABLES.

Estimates of volume per hectare and total volume by species and diameter classes wers obtained for each crop composition from the tree/plot volume file. These are also given in table nos. 6.3 A \& B, 6.4 A \& B and combined growing stock in terms of volume is given in table no. 6.6 A \& 6.6 B.

4.7 SAMPLING ERROR:

The sampling was considered as systematic cluster eample having two sample plots in each cluster. In order to eatimate sampling error the sample plots were considered to constitute simple random aample of unequal clusters because
in many cases only one plot was enumerated from a grid. As such the ratio method of estimation is used and the sampling error is estimated as follows:

Estimate of variance of R

$$
\begin{aligned}
& \hat{Y} \hat{R}=\frac{N-n}{N-n} x^{-2}-\sum_{i=1}^{n} \\
& \left(Y_{i}-\hat{R} x i\right)^{2} \\
& \text { n - } 1 \\
& =\frac{1}{n(n-1) x^{-2}}-\sum_{i=1}^{n} \quad\left(y_{i}-\hat{R} \times i\right)^{2}
\end{aligned}
$$

(Ignoring the finite population correction factor)

$$
=\frac{-n(n-1) x^{-2}}{n\left(\sum_{i=1}^{n} y^{2}-2 \hat{R} \sum_{i=1}^{n} x y+\hat{R}^{2} \sum_{i=1}^{n} x i^{2}\right) .}
$$

Where $n=$ total number of clusters in the sample

$$
\begin{gathered}
Y i=\text { the total of per hectare volume in the } \\
\text { ith grid. }
\end{gathered}
$$

$x^{-1}=\frac{\sum_{i}^{n}=1 \times i}{n}=\begin{aligned} & \text { Average number of plot per } \\ & \text { grid }\end{aligned}$
$R=\frac{\sum_{i}^{n} i=1}{\sum^{n} Y_{i}=1^{n}}$
$=$ Estimate of average volume per hectare overall clusters.

Estimate standard error (S.E.) of B
S.E. $=\sqrt{\hat{V} \hat{R}}$
S.E $\%=\frac{\text { S.E. }}{\underset{R}{A}--\quad \times 100}$

The standard errors have been estimated for the growing stock in each crop composition and are given in table rio.6.7. In this case the standard error is slightly more because the number of sample plots in each crop composition was slightly less.

CHAPTER - V
 INVENTORY RESULTS - AREA

AREA
The forest resources information of Dadre and Nagar Haveli has been compiled on the basis of randomily selected 62 plots falling all over the forest areas of the territory. The forest area figures supplied by the Forest Department of union territory (as per their Working Plan) are adopted. Out of a total geographical area of 48882 ha the territory has a forest expanse of 19935.42 ha on which the results of this survey are based. For the purposes of this inventury survey the territory was taken as a single unit and as such growing stock as well as area results pertain to the territory as a whole.

This forest area of 19935. 42 ha was divided by the total no. of sample, i.e., 62 falling in the entire forest areas giving the weightage of each sample plot as 321.53903 ha. Further break-up of area under different land uses covers, crop compositions, topography classes, slope classes, soil depth classes, top-height classes, size classes, canopy layers etc. was worked out giving due weightage to the sample plots falling under various lcality factors as observed during the course of field work. These are discussed below in details:

5.1 EOREST AREA BY LAND COYERS:

Table no. 5.1 produced below gives a pattern in which forest land of the territory is being used. It shows that 8.07% of the forest area is under dense forest with canopy density more than $76 x, 33.87 \%$ is under moderately dense forest with canopy density ranging between $\mathbf{3 0 - 7 0 \%}$ and almost arı equal proportion (32.26\%) is under open forest with a canopy density 5-30\%. 3.23\% of forest area is under young plantations having diameter between 2-10 crns at breast height, 16.13% of forest land was under young crop of natural or artificial regeneration with diameter below 2 cms. Such crop cannot be considered to be an established one. Area urider scrub, agricultural land with and without trees and water bodies each constituted 1.61%. All the randomly selected plots which were spread over the entire forest area of the territory were visited by the field party.

Table No. 5.1
BREAK UP QF AREA BY LAND USE CLASSES

5.2 AREA BY CROP COMPOSITIONS:

For classifying the area under different categories viz; topography classes, slope classes, soil-depth classes, top-height classes, size classea, canopy layers the sample plote bearing only vegetated area such as dense, moderately dense, open tree forest, young plantations and young crop of artificial or natural regeneration have been taken into consideration which collectively form an aggregate of 58 plots distributed over a forest area of 18649.26 ha. Remaining 4 plots having an area of 1286.16 ha falling in scrub forest, agricultural land with and without trees, and water bodies have been ignored. The forests of Dadra \& Nagar Haveli have been classified into two main strata nemely; Teak and Migcellaneour. Table no. 5.2 below gives areas and percentage of tree forests under these two forest types. Table indicates that 56.96\% of vegetated area is under Teak forest type and 43.10% is under Miscellaneous forest type. In Miscellaneous forest under Mo species was found in majority.

$$
\text { Table No. } 5.2
$$

Crop compositon	No. of plote	Area in ha.	Percentage
Teak Miscellaneous	$\begin{aligned} & 33 \\ & 25 \end{aligned}$	$\begin{array}{r} 10610.79 \\ 8038.47 \end{array}$	$\begin{aligned} & 56.90 \\ & 43.10 \end{aligned}$
Total	58	18649.26	100.00

5.3 AREA BY CROP COMPOSITIONS AND TOPOGRAPHY CLASSES:

Table no. 5.3 below shows the distribution of vegetated area under different farest types by topography classes. Out of the four topographic classes mentioned in the table, forests are confined to gently rolling and hilly areas only. No sample plot was located in flat lands and very hilly areas. The table also reveals that the majority of the forest in the territory is in hilly area.

Table No. 5.3
BREAK UP OF TREE VEGETATED AREA BY TOPOGRAPHY CLASSES

Crop compositon	Flat	Gently rolling	Hilly	Very hilly	Total
Teak Misc.	-	$\begin{array}{r} 964.62 \\ 1929.23 \end{array}$	$\begin{aligned} & 9646.17 \\ & 6109.24 \end{aligned}$		$\begin{array}{r} 10610.78 \\ 8038.47 \end{array}$
Total	-	2893.85	15755.41	-	18649.26
\% age	-	15.52	84.48	-	1008

5.4 AREA BY CROP COMPOSITIONS AND SLOPE CLASSES:

Table no. 5.4 below gives distribution of vegetated area under different slope classes ranging from less than 10% to over 1ø0\%. This table reveals that most of the forest area is confined to slopes below 60\%.

Table No. 5.4

BREAK-UP OF THE TREE VEGETATED AREA BY SLOPE CLASSES

Crop composition	Less than 10\%	10-60\%	80-100\%	100 \& above	Total
Teak	643.08	9967.71	-	-	10610.79
Misc.	1929.23	6100.24	-	-	8038.47
Total	2572.31	16076.95	-	-	18649.26
x age	13.79	86.21	-	-	100

The data was collected under various soil-depth classes viz; very shallow (15 cm), shallow ($15-30 \mathrm{~cm}$), medium ($30-90 \mathrm{~cm}$) and deep (over 98 cm). Over 78\% of the vegetation is supported by medium deep soils and the remaining on shallow soils. In other words most of the vegetation is supported by shallow and medium deep soils.

Table No. 5.5

BREAK UP OF TREE VEGETATED AREA BY SOIL DEPTH CLASSES

| Crop
 compo-
 sition | No soil | Very
 shallow | Shallow Medium Deep Total |
| :--- | :--- | :--- | :--- | :--- | :--- |

5. 6 AREA BY CROP COMPOSITIONS AND TOP HEIGHT CLASSES:

Table no. 5.6 below gives distribution of vegetated area of the territory by top-height classes. This table reveala that 13.79% of the vegetation is at very young stage having top-height ranging between $1-5 \mathrm{~m}, 12.07 \%$ of the vegetation has top-height between 6-10 m, 13.79% has height between 11-15 m. Top height of most of the vegetation (45\%) is between 16-20 m whereas only 15.52% of the vegetation has top-height upto 25 m . No tree crop has attained top-height beyond 25 m .

Table No. 5.6
BREAK UP OF TREE YEGETATED AREA BY TOP-HEIGHT CLASSES;

Crop composition	$1-5$ m.	$\begin{gathered} 6-10 \\ \mathrm{~m} . \end{gathered}$	$11-15$	$\begin{aligned} & 16-20 \\ & \mathrm{~m} . \end{aligned}$	$\begin{array}{cc} 21-25 & 26 \\ \text { m. } & \text { m. } . \end{array}$	$26-30$	Total
Teak	1607.69	964.62	1929.23	4823.09	1286.16	6	10610.79
Misc.	964.62	1286. 16	643.98	3536.92	1607.69	-	8838.47
Total	2572.31	2250.78	2572.31	8360.01	2883.85	5	18649.26
Sage	13.79	12.07	13.79	44.83	15.52	-	180

Table no. 5.7 gives distribution of vegetation by crop composition and size classes namely; regeneration crop (below 10 cm dia), pole crop $(10-20 \mathrm{~cm}$ dia), small timber (20-30 cm dia), big timber (over 30 cm dia) and mixed size crop which has no marked dominance of any particular size class. There is virtually no crop of big sized timber in the territory. The over all position is that nearly 57% of the crop is young heving diameter below 30 cms .

Table No. 5.7
BREAK UP OF TREE YEGETATED AREA BY SIZE CLASSES:

Crop composition	Regeneration	Pole crop	Small timber	Big Mixed timber size	Total
Teak	2250.78	321.54	3536.92	- 4501.55	10610.79
Misc.	964.62	1607.69	1929. 23	- 3536.93	8038.47
Total	3215.40	1929.23	5466.15	- 8038.48	18649.26
\%age	17.24	10.34	29.31	43.11	108

5.8 AREA BY CROP COMPOSITIONS AND CANOPY LAYERS:

Table no. 5.8 gives distribution of vegetated area by crop composition and forest canopy varying from no storey to multi-storeyed forest. This table indicates that 17.24\% of the crop has no storey as it is at a very yound stage where canopy formation has not yet taken place. Almost 13.79% of the crop has single canopy and about 68.97\% of it has two storeyed forest, out of which Teak constitutes 66% ard Miscellaneous constitutes 34% of the crop.

$$
\text { Table No. } 5.8
$$

BREAK UP OF TREE YEGETATED AREA BY CANOPY LAYERS

Crop	No storey	Single storey	Double compo- storey	Three or more storey
sition				

Data pertaining to soil erosion was collected from 2 ha area around the plot. On the basis of ocular estimation, it has been found thet about 85% forest land is affected by moderate soil erosion whereas 15% of the area is affected by mild erosion. Because of good vegetal cover over the forest areas heavy erosion was not noticed anywhere during the course of this survey.

5.10 REGENERATION STATUS:

An assessment of regeneration of comercially important opecies was made during the inventory work of the territory. It was done by counting the number of seedinige of comercial species in 16 sq.m. area around the centre of the plot. The epecies considered for this survey were:Acacia catechu, Adina cordifolia, Albizzia species, Dalbergia latifolia, Dalbergia sisoo, Diospyros melanoxylon, Eucalyptus epeciea, Garuga pinnata, Gmelina arborea, Lagerstroemia parviflora, Lannea coromandelica, Mitragyna paryifolia, Ougenia dalbergioides, Pterocarpus marsupium, Syzigium cumini, Schleichera oleasa, Terminalia crenulata, Terminalia; belerica, Terminalia chebula, Terminalia arjuna, and Tectona. grandis.

The survey revealed that most of the forest area (about 80X) was devoid of any regenration and it was inadequate in the remaining 19\% area. One percent of the forest area was covered with adequate regeneration.

5.11 FIRE INCIDENCE:

Data regarding incidence of occurrence of fire in the forest was collected from the vicinity of the plot centres. On the basis of this survey most of the forest areas of this territory (about 97%) were subjected to occasional fires. No areas were affected by heavy and frequent fires. The fires are mostly set by local dwellers during the course of collection of MFP.
5.12

GRAZING INCIDENCE:
The inventory results indicate that almost 86\% of the forest area is affected by medium grazing and only $10 x$ of the area was affected by heavy grazing. quite a small proportion of the area was found to be without any grasing incidence. Such areas are located away from habitation i.e. on hills which do not provide an easy access to cattle.
5. 13 BAMBOO OCCURRENCE:

The forest areas of the territory are poor in bamboo growth. No areas with pure bamboo brakes or even dense bamboo could be found in the territory. Moderately dense bamboo (with $50-100$ clumps per ha) was noticed in 12% of the forest area. Scattered or sparse bamboos were found here and there in association with the tree crop. The bamboo in regeneration stage was also found in some sample plots (15% of the forest area) - these were the areas where clump formation had not yet taken place. Thus, bamboo accurrence in the territorial forests is not of much significance and, therefore, not dealt separately.

CHAPTER-YI

INYENTORY RESULTS: GROWING STOCK

6.0 GENERAL:

The results of growing stock of trees are discussed in this chapter. The foreste of the territory, as discussed earlier, were divided into two strata namely; Teak and Miscellaneous spread over an area of 10610.79 ha and 8038.47 ha respectively. Bemboo stratum is not separately identifiable due to its sparse and scattered occurrence. The distribution of the growing stock in the form of total no. of stems and stems per hectare and volume and volume per hectare for both these strata has been given in the tables at the end of this chapter. However, findings from tables are discussod in the followiret paragraphs:

6. 1 TYTAL NO OF GTEMS AND STHMS PER HECTARE
 STRATUM: TEAK:

Table nos.6.1 A and 6.1B deal with the distribution of total no. of stems and stems per hectare in Teak stratum covering ant area of 10610.79 ha . These tables reveal that Tectona srandis includes total no. of 334397 stems or 31.515 stems par hectare and constitutes about 18.57\% of the tree crop in the stratum. It is followed by Terminalia crenulata, Garuga pinnata, Nitragyna parvifolia and Adina cordifolia and so on in the order of their contribution per hectare. It is given below in their doscending order: (Note: The percentage of Teak is not adequate to consider it as a separate type, but considering ita economic importance and stocking in comparison with other species it is treated as a separate stratum.)

Order	Species	Total no. of stems	stems per hectare.	Percentage.
I	Tectona grandia	334397	31.515	
I I	Terminalia crenulata	231506	21.818	18.57 12.85
IV ${ }^{\text {I }}$	Garuga pinnata ${ }^{\text {Mitragya }}$,	138248	13.029	12.65 7.68
V	Adina cordifolia	73946 61085	6. 969	4.11
	Rest of the species	61085 961362	$\begin{array}{r} 5.757 \\ 90.603 \end{array}$	3.39 53.40
	Total	1808544	168.691	108.080

This table further shows that teak is stocked well upto 60-76符iameter class. Terminalia crenulata too shows the
same trend.
6. 2 TOTAL NO. OF STEMS AND STEMS PER HECTARE:

STRATUM: MISCELLANEQUS:
Table nos. 6.2 A and 6.2 B give distribution of total no. of stems and stems per hectare in Miscellaneous stratum which is spread over an area of 8038.47 hectares. These tables reveal that out of aggregate 1347241 stems in this stratum highest contribution is made by Acacia catechu which occurs naturally as well as in plantations raised by the State Forest Department. It's contribution is 241154 stems (30 stens per hectare), followed by Terminalia crenulata, Garuga pinnata, Tectona grandis and Wrightia tinctoria and finally by Dalbergia latifolia. The trend is similar in case of stems per hectare. This is shown in the following table:

Order Species	Total no. of stems	Stems per hectare	Percentage
I Acacia catechu	241154	30.000	17.90
II Terminalia crenulata	170415	21.2000	12.65
III Garuga pinnata	135845	16.800	10.02
IV Tectona grandis/ Wrightia tinctoria	93246	11.8000	8.92
\checkmark Dalbergia latifolia	57877	7.208	4.29
Rest of the species	649504	80.808	48.22
Total	1347241	167.600	100.00

6.3 TOTAL YOLUME AND YOLUME PER HECTARE: STRATUM: TEAK:

Table nos. 6.3 A and 6.3 B give distribution of total valume and volume per hectare in Teak forest type. Teak obviously tops in the volumetric contribution (112782 cu. m. and $10.629 \mathrm{cu} . \mathrm{m} / \mathrm{ha}$) followed by Terminalia crenulata, Arogeisgus latifolia, Garuga pinnata, Bridelia retusa and ao on. Their representation is given in descending order in the following table:

is Total volume and volume per hectare in this stratum is $623540 \mathrm{cu} . \mathrm{m}$. and $58.765 \mathrm{cu} . \mathrm{m}$. per hectare.

A comparisor between table no. 6.1 and 6.3 pertaining to Teak stratum shows that teak tops the list both in terms of stems and volume.
6. 4 TOTAL YOLUME AND VOLUME PER HECTARE:

STRATUM: MLSCELLANEOUS:

Table nos. 6.4 A and 6.4 B deal with the distribution of total volume and volume per hectare in Miscellaneous stratum (Mixed forest type). Out of total volume of $364793 \mathrm{cu} . \mathrm{m}$. contribution of Anogeissus latifolia is maximumi.e, 56920 cu.m. ($7.081 \mathrm{cu} . \mathrm{m} . / \mathrm{ha}$) followed by Terminalia crenulata with 52119 cu.m. (6.485 cu.m./ha), Garuga pinnata, Acacia catechu, Tectona grandis and so on. Total per hectare volume in this stratum is $45.381 \mathrm{cu} . \mathrm{m}$. Maximum volume contribution is rendered by trees between 2025 cm diarneter olass followed by those of 25-30 cm diameter class and 30-35 cm. diameter class. Following table depicts the descending. order of the volumetric representation of various species in this stratum:

6.5 COMBINED GROWING STOCK IN TERMS OF STEMS:

Table nos. 6.5 A and 6.5 B deal with total no. of stems and stems per hectare combined together for the entire the vegetated area of the territory, i.e., 18649.26 ha. A combined picture is somewhat different from that by stratumwise. Here, Tectona grandis and Terminalia crenulata contribute maximura stock, as in Teak forest type with 427843 and 401921 stems (22.930 and 21.552 stems per hectare). They are followed by Acacia catechu, Garuga pinnata, Hrightia tinctoria and Mitragyna parvifolia and so on. These species are given in the folluwing table in their descending order:

Total no. of stems estimated in the territory is 3147785 and stems per hertare is eatimated as 168.784.
6.6 COMBINED GROWING STOCK IN TERMS OF YOLUME:

Table nos. 6.6A and 6.6. B give distribution of total volume and volume per hectare for whole of the forest area of the union territory combined together for both the strata. Total volume estimated in the territory is to the tune of 988333 cu.m. (52.995 cu. un. per ha.). On the whole maximum contribution is made by Terminalia crenulata with 140389 su.m. $(7.528 \mathrm{cu} . \mathrm{m}$. per ha) followed by Tectona grandis with $133216 \mathrm{cu} . \mathrm{m}, ~(7.143 \mathrm{cu} . \mathrm{m}$. per ha), Anogeissus latifolia, Garuga pinnata, Acacia catechu. Mitragyna parvifolia, Lanriea corcmandelica and so on. As seen on the whole, maximum contribution is made by the tree crop between 20-25 cm
 clase and $30-35 \mathrm{~cm}$ diameter class and so on. Minimum contribution is of $70-8 \varnothing \mathrm{~cm}$. dia cless which shows that big sized trees are not many in the territory. Following table gives volumetric contributions of various species in their descending order in the whole forest area:

Order Species	Total volurne	Vol/ha	Percentage
Terminalia crenulata	140389	7.528	14.20
11 Tectona grandis	133216	7.143	13.48
III Arogeissus latifolia	117851	6.276	11.84
IV Garuga pinnata	65906	3.534	6.69
v Acagia catechu	51329	2.752	5.19
VI Adina cordifolia	37197	1.994	3.76
VII Mitragyna parvifalia	30927	1.658	3.13
Rest of the species	412318	22.110	41.71
Total	988333	52.995	106\%

STANDARD ERROR:
Table no. 6.7 poduced below gives standard error percentage in respect of area, volume per hectare and total volune for both the strata and the entire territory.

For area, standand error was estimated to be 11% for Teak stratum, 15.3% for Miscellaneous stratum and 9.3% for the entire forest area of the territory.

For volume per hectare, standard error was estimated to be 23.6\% for Teak forest type, 25.2\% for Miscellaneous (Mixed) forest type and 19.9% for the enire forest area of the territory.

Similarly for total volume, standard error was estimated to be 26\% for Teak stratum, 29.5\% for Miacellaneous stratum and 22% for the entire forest area $日 f$ the territory.

Staridard error of Miscellaneous stratum was higher than that of Teak for all the three prarameters, probably because of lesser number of plots.

Since these survey results are based on 58 sample plots only the data processed on the basis of this inventory survey should be uged with due caution. It may be treated as indicative only.

$$
\text { Table No. } 6.7
$$

Crop composition	$\underset{\left(k \mathrm{~m}^{2}\right)}{ }$	SE\%	Volume per ha.	SE\%	$\begin{aligned} & \text { Total volume SEX } \\ & \text { (in } 0 . \mathrm{cu} . \mathrm{m} \text {) } \end{aligned}$	
Teak	$\begin{gathered} 106.1879 \\ (33) \end{gathered}$	11.0	58.765	23.6	623.548	26.0
Misce.	$\begin{array}{r} 80.3847 \\ (25) \end{array}$	15.3	45.381	25.2	364.793	29.5
Total	$\frac{186.4926}{(58)} 9.3$		$52.895 \sim 19.9$		988.333 22.0	

2. Figures in brackets denote the number of plots.
Table No. 6.1 A
Redra and Hagar Havali.

Oinmetar 21 \&Fxes (in rn)

Specie* Dosseription												
	10-15	15-20	20-25	25-30	30-35	35-40	40-50	$50-60$	80.70	20-30	80.	Totul
Adine condifsid.	19.270	$12.86 .1$	9.645	3.215	12.860	-		3.215	-	-	-	54.655
Ancgeistus 1 thifolis	12.860	19.2961	12.860	-	12.860		\sim	3.215	-	-	-	61.085
Bombss ceita	9.845	1-	3.215	-		\cdots	-	\cdots	-	-	-	45.010°
Eridalit return	6.430	6.4361	6.430	22.505	9.645	3.215	3.215	-	-	-	-	12.860
Galbargia $1+$ ti folit	3.215	$3.21: 1$	6.430	3.215	-	3.215	3.215 .	-	-	-	-	57.870
Diespupros neti momyl an	12.8607	$-$	\sim	-	-	\sim	-	\cdots	$=$	-	-	12.290
Garuy* pinnota	35.358	32.151.	41.796	22.505	6.430	-	-	-	-	\cdots	$-$	12. 860
Leserstroeni perwiflore	-	3.23\%	-	-	-	*	\sim	\sim	-		-	133.248
Lannat = coromanstelica	12. 58.0	$9.64{ }^{\circ}$	12.86i	12.860	6.430	-	3.215	\sim	\cdots	\sim	-	3.215
Mitragyma porwifolis.	19.290	25.721.	9.845	9.645	3.215	3.215	3.215	\sim	-	- -	-	5.8780
Ptorocarpus mursispium	6. 430	-	-	3.215	6.430	-	3.215	-			-	
rectoma gramdi	106.108	\$4.66\%	77.172	36.550	38.580	9.64%	3.215	3.215	\cdots	-	-	17.290
Torminalit b*leric*	3.2 .15	$3.28: 1$	9.645	-	-	-	-	3.215	3.215	\sim	-	334.397
Termimali* =renulsta	\$5.366	54.06\%	00.387	35.366	9.645	8.430	6.430	3.215 .	3.215	$\stackrel{-}{\sim}$	-	22.505
Wrignti * tinctor-i	67.527	12.865:	9.645	3.215	3.215	-	\cdots	-	3.215 -	*	-	231. 806.
Msacell theout species	270.07\%	30.033:	99.678	41.796	22.535	6.430	9.645	3.21 .5	6.430	3.215	0	96.462
rotal	639.850	$327.81 \times 1 \geqslant 50.538$		$202.547 \cdot 128.600$							6.430	257.415
				35.365	32.150	12.36	16.075	3.215	6.430	800,544		

Table Ho. 6.18
Oadre and Negar Havali.

Specium Duseription	ginmeter clasees (in Em)											
	10-15	15-20	20-25	25-30	30-35	\$5-40	10-50	50-60	60-70	30-83	86.	rotel
Acsacia estastu	1. A19	0.908	0.604.	0.606	0.90\%	0.303	-					
Adint sordifoli*	1.513	1.212	0.909	0.303	1.212	.	-	${ }^{-}$	-	-	-	5.15:
Anogai asum letifolia	1.212	1.818	1.212	0.3	-	-	-	0.303	-	-	-	5.757
Brabam gaitu	0.907	-	0.303	-	-	-	-	-	-	-	*	4.242
Aridalia retura	0.606	0.600	0.606	2.121	0.907	0.303	D. 303	*	-	-	-	1.212
Oatbergi $1+$ tifolia	0.303	0.303	0.606	0.303	-	0.303	-	-	-	\cdots		5.454 1.818
Oiospyres melatiomey on	1.212	-	-	-	-	-	-	-	-		\cdots	1.818
Garuge pinnet.	3.333	3.0311	3.939	2.121	0.606	-	-	-	-	-	$*$	1.812 13.029
Legerstrcamie parwiflara	-	0.303	-	-	-	-	-	-	-	-	\sim	13.029
Lemmea soronbridmis.	2.212	0.009	1.21:	1.212	0.608	\sim	0.303	*	.	-	-	3.454
Mitrogyma faruifolia	1.318	2.424	0.90	0.909	0.303	0.303	0.303	-	-	-	.	6.969
Ftorocarcius marsiapi um	0.60%	-	*	0.303	0.008	\sim	0.303	\sim	-	-	-	1.818
Tactons grandz.	10.000	3.152	7.27	3,636	3.636	0.908	0.303	0.353	0.303	-	-	31,525
Tarminalia	\$.333	5.152	7.57	3.333	0.009	0.605	0.606	-	0.303	-	-	21.818
Tarmimaliateatara	0.303	0.303	0.90	-	-	-	-	0.303	0.303	-	-	2.121
Wrighti* timstori*	0.364	1.212	0.90	0.303	0.303	-	-	-	-	\cdots	-	9.091
Hiscollenmoun *paciat	25.455	9.425	9.394	3.939	2.121	0.605	0.909	0.303	- bive	0.303	0.606	52.327
Totel	00.302	31.918	35.363	19.089	12.120	3.335	3.030	1.212	1.515	0.30%	0.606	109.801

reble No. 6.2 A
Oudra and Nager Maveli.

Stratum: Mixcellsnesuy Stems : no		.								Aras : 0038.47 Non of ploty: 25		
Specioy Datseription	Dismater classes (in cm)											
	10-15	15-20	20-25	25-30	30-35	35×41	40-50	50-60	60-70	30-70	sos	Totat
Acucie astechu	170.416	35.369	12.862	9.646	6.431	3.235	3.215	-	-	-	-	241.154
Adimateardifolia	6.431	3.215	-	12.862	3.215	3.215	3.215	-	-	\cdots	-	32.253
Arsomixisum latifolin	25.087	-	19.292	3.215	-	-	-	-	-	-	-	30.584
"Bonban caj',	-	3.215	3.215	-	3.215	\sim	-	3.215	-	\cdots	-	12.860
Bridelis returs	6.431	0.431	3.215	3.215	-	-	-	-	-	-	-	19.272
'obltergia latifodia	16.077	16.077	9.645	12.082	-	-	\$.215	-	-	-	-	57.677
Dismpyrse malimeryl om	9.646	6.438	3.215	-	-	-	-	-	-	-	-	19.292
Garuga pinnata	24.723	19.292	51.445	25.958	6.431	3.215	-	-	*	-	-	135.045
Lageretroamia farwiflars	12.885	3.215	3.215	-	-	-	-	-	-	-	-	19.202
Lamriea carchandelica	3.215	3.215	6.431	-	3.215	6.432	-	*	*	-	$=$	22.507
Nitragyms parwifolis	3.215	3.215	6.431	6.431	6.431	-	-	-	-	-	\cdots	25.323
1 Pardocargus marsupium	-	-	6.431	3.215	C. 431	~	-	-	-	-'	-	26.077
rectom, 3 randis	25.725	22,508	28.938	16.077	-	-	-	-	-	-	-	93.24A
'rarminalia bularice	6.432	-	-	-	-	-	-	\sim	-	-	-	6.431
irerminalas erenulata	70.737	55.369	35.369	9.646	6.431	-	9.646	3.215	\cdots	-	-	170.415
- Urighti a tamiturit	70.338	14.037	8.431	-	-	\sim	-	-	-	-	-	\$3.247
1Mi*emllammat specin*	141.477	77.169	38.585	35.369	32.154	6.431	9.646	3.215	-	*	-	344.040
iratal	535.202	250.798	234.722	141.478	73.954	22.307	24.937	3.8 .45	-	-	-	1347.241

Table Na. 6. 2 B
Ondre and Nagar Have

reble Mo. 6.3 A
Dedre and Nager Heveli.

Stratum: rask Holume: DOCt										Ares: 10 b 10.7 F No. of plotz: 33		
Specime Dareription	Diamater elattox (in en)											
	10-15	15-20	20-28	25-30	30-35	35-40	40-50	50-60	60-70	30-80	30.	Totsl
Pcsai a cotuechu	1.295	1.666	1.963	2.547	6.7418	2.065	-	-	-	-	-	17.004
Adina corsifolit	1.253	1.889	2.145	1.401	8.314	-	-	6.441	-	-	-	21,466
Anoguissus lotifolia	11.460	26.728	21.943	-	-	-	-	-	-	-		
Bombare ceibe	0.403	-	0.891	$=$	-	-	-	-				60.131
Brideli * retuse	0.42 d	0.983	1.793	8.816	5.624	2.451	3.592	-	-	-	-	23.789
Daltergis latifolia	0.138	0.477	1.825	1.613	-	\$.236	-	\sim	-	-	-	7.259
Diospyroe melanoryl on	0.721	-	-	-	-	-	-	-	-	-	-	0.721
Garuga pinnet*	2.004	4.594	10.747	9.807	4.085	-	-	-	-	-	-	30.240
Lesperstroumit prrwifior*	-	0.541	-	-	-	-	-	\sim	-	-	-	0.541
Lenmea corouandalica	0.711	1.316	3.130	5.251	$\pm .803$	\sim	5.496	+	-	\cdots	-	12.587
Mitregune farsitolis	0.732	3.873	2.154	3.756	2.334	5.067	5.824	-	-	-	-	21.540
Ftarocarpuar marsiopium	0.371	-	-	1.878	4.268	-	4.925	-	-	--	-	11.438
Tectoms gramsia	4.743	9.051	23.338	10.338	27.482	10.229	3.661	5.790	9.910	-	-	112,782
Tarninalitoblerics	0.340	0.403	2.659	-	-	-	-	6.706	18.062	-	-	23.164
Terminalia cramulat	2.122	9.369	23.906	16.277	6.992	6.802	12.171	-	10.621	-	-	88. 250
Urighta tanntoria	2.780	1.623	2.281	0.912	1.390	*	-	-	-	-	-	0.996
	.11.300	11.099	24.182	16.956	12,903	4.998	10.53?	5.346	18.a7	11.010	47.218	175.228
rotel	90.318	73.1516	122.05	86.724	33,846	33.648	45.104	24.235	52.475	12.810	47.218	623.590

Stratun: 「eatr Volume fier hectereccu.n.?										Pras: 10610.77 No. of Flota: 3.3		
Specier Daseription	Disumtar elatres (in cm)											
	10-15	15-20	20-25	25-30	30-35	$35 \sim 40$	40-60	51)-60	$60-70$	70-30	$80+$	Toted
+												
Acseis estachu	0.122	D. 157	0.185	D.240	0.636	0.270	-	*	-	-	-	1.610
Adine cardifulit	0.120	0.178	0.202	0.132	0.784	-	-	0.807	-	-	-	2.023
Anagaismax litifolis*	1.080	2.519	2.068	-	-	-	-	-	-	-	-	5.667
Bomben Eaiba	0.038	-	0.084	-	-	\sim	-	\sim	-	-	-	0.122
Bridalin Patux	0.040	0.093	0.169	0.831	0.530	0.231	0.348	-	-	-	-	2.242
Dalhargin 1etifalie	0.013	0.045	0.172	0.152	-	0.30 .5	-	-	*	-	-	0.687
Oinspyres melamokylon	0.088	-	-	-	-	-	-	-	-	-	-	0.088
Geruga finmata	0.192	0.433	1.013	0.850	0.385	-	-	-	-	-	-	2,550
Leuperstrommi parwiflor*	-	0.051	-	-	-	-	-	-	*	-	-	0.051
Lannay Ecrowbridelich	0.067	10.124	0.895	0.493	0.348	\sim	0.518	-	-	-	-	1.8 .46
Mitraguma parvifolita	0.06%	0.365	0.703	0.354	0.220	0.289	0.530	-	-	-	-	2.030
Ftamocarpus marcupium	0.035	-	-	0.177	0.402	-	0.484	-	-	-	-	1.078
Tectone grandis	0.447	0,853	2.190	2.765	2.590	0.964	0.345	0.541	0.734	\square	-	10.629
Torminalze cremuleta	0.200	0,893	2.253	1.534	0.659	0.641	1.147	-	1.001	-	-	0.318
Terminalia bolarica	0.032	0.038	0.250	-	-	-	-	0.632	1.231	-	-	2.193
Urigntia tinstori.	0.262	0.153	0.215	0.086	0.131	-	-	*	-	-	-	0.847
Miseallancous *peries	1.005	1.048	2.379	14598	1.216	0.471	0.993	0.304	1.779	1.113	4.450	15,514
Total	3.847	6.939	11.578	8.192	7.902	3.171	4.345	$2.284{ }^{\circ}$	4.345	1.113	4.950	58.755

Table No. 6.4 A
Oodra
Table Mo. 6.4
Dootre and Kager Mendil.

Stratum: Mizseldaneous												
Spaciot Description	Oimuter clasees (in (n)											
	10-13	15-20	20-26	25-30	30-35	35-40	40-50	50-60	60-70	20-80	80.	Totat
Ac*eis eatechu	2.161	0.670	0.434	0.535	0.538	0.357	0.545	4	-	-	-	4.260
Adina cordifolia	0.047	0.051	-	0.703	0.504	0.348	0.504	-	-	-	\sim	4.280
Amsgaisfut letifolia	1.902	-	4.214	0.985	-	-	-	-	-	-	-	7.081
Bombar saibe	-	0.038	0.07%	-	0.200	-	-	0.694		\cdots	-	1.017
Bricala retusa	0.020	0.076	0.100	0.162	-	-	-	-	-	-	-	0.356
Delbergi* 2*tifoli*	0.108	0.385	0.120	0.022	-	-	0.529	-	-	-	.	2.257
Diospyror malanonylam	0.058	0.127	0.104	-	-	-	-	-	-	-	-	0.279
Garust pinneta	0.153	0.351	1.866	1.413	0.491	0.363	$=$	-	-	-	-	4.435
Lagerstrouni* parviflors	0.083	0.088	0.151	-	-	-	-	-	-	-	-	0.322
Lenna* Eorohandelice	0.021	0.036	0.196	-	0.220	0.056	-	\sim	-	-	.	1,329
Mitragyna farvifolia	0.012	0.071	0.263	0.323	0.499	-	-	-	-	-	-	1.180
Ptarocarpur marzupiun	\sim	-	0.379	0.179	0.601	-	-	-	-	-	-	1.059
rectand grandis	0.070	0.434	1.093	0.936	-	-	-	-	-	-	-	2,542
Torminslia crenulsta	0.364	0.677	1.361	0.865	0.563	*	1.753	1. 102	-	-	\sim	6.485
Torninalis belerice	0.056	-	\sim	-	-	-	-	-	-	\cdots	-	0.056.
Urightie tinctorit	0.306	0.217	0.172	-	-	-	-	*	-	-	\sim	0.755
Mi*collanmous epmeita	0.779	1.242	1.194	1.647	2.225	0.642	1.654	0.838	-	-	-	10.021
Total	5.320	4. 4.95	11.728	8.350	5.647	2.506	4.985	2.134	-	\sim	-	45.381

Table No. 6.5 A
Dadra and Magar Haveli.
Ares : 10.64926 conosha.
No. of plets : 50

Speciex Deserifition	Oinneter el axsef (in cm)											
	10-15	15-20	20-25	25-30	30-35	35-40	$40-50$	50-60	60-70	70-40	80*	Totel
Mescial catochu	185.706	45.014	19.292	16.076	16.076	6.430	3.245	*	-	-	-	295.009
Adin cordifolia	25.721	16.075	9.646	16.077	16.075	3.215	3.215	3.215	-	-	-	93.238
Progaizaut latifolia	28.937	19.290	32.152	3.215	-	-	-	*	-	-	-	83,594
Bomban ceibe	9.645	3.215	6.430	-	3.215	\cdots	-	3.215	-	-	-	23.720
Arionlis rotura	12.861	12.861	9.645	25.720	9.645	3.215	3.215	-	-	\cdots	\sim	77. 162
O+hturgie 1atifolie	19.292	19.292	16.076	16.077	-	3.215	3.215	-	*	-	-	73.15\%
Diospymos melanomyzam	22.506	6.431	3.215	-	-	-	-	-	-	-	-	32.152
taruga pinmat*	81.089	51.443	93.242	51.443	12,881	3.215	-	\cdots	-	-	-	273.293
Legarstrommia paruiflora	12.062	6.4\$0	3.215	$*$	-	-	$=$	-	-	-	-	22,507
Lannep soromandelica	16.035	12.880	19.291	12.880	9.645	6.431	3.215	-	-	-	\sim	80.337
Mitragyna paruifolia	22.505	28,936	16.076	26.076	9.646	3.215	3.215	-	-	-	-	99,869
Ptarbearpua marzupium	6.430	-	6.431	6.430	12.881	-	3.215	*	-	-	-	35.367
Tectene grandie	131.831	77.175	106.110	5.4 .557	30,580	9.645	3.215	3.215	3.215	\sim	-	427.643
Terminslit erenulata	106. 105	90.036	115.736	-30.0.12	16.076	6.430	16.076	3.215	3.215	-	-	401.921
Tarmimalit balarice	9.645	3.215	9.645	-	-	-	-	3.215	3.215	-	*	28.936
Hrighti * timeteris	138.286	29,937	16.076	3.213	3.215	-	-	*	-	-	*	169.709
Mistadhammont xFeciar	411.535	167. 202	136.283	77.165	54.659	12.861	19.291	6.430	6.430	3.215	B. 430	903,521
Total	1225.05\%	588.412	620.560	344.023	202.654	57.872	61.04?	22.303	16.075	3.215	6.430	3147.765

$\mathrm{r}_{\mathrm{mb}} \mathrm{A}=\mathrm{Mo} .6 .5 \mathrm{D}$ Arst : 18.54926 c0002 hen.
Ho. of plote : 58

Specier Dexaription	Oinmeter claswas (im men)											
	10-15	15-20	20-25	25-30	30-35	35-40	-10-50	50-60	60-70	P0-6id	- 0	Total
Acsaia cotechu	10.172	2.414	2.035	0.862	0.862	0.345	0.172	-	-	-	-	15.882
Adime cordifalis	1.379	0.882	0.517	0.682	0.082	0.172	0.172	0.172	-	-	\cdots	4.998
Anogaifsum latifolis	1.552	1.034	1.724	0.172	-	*	-	-	-	-	-	4.982
Bamban caibe	0.517	0.172	0.345	"	0.172	*	-	0.172	-	-	-	1.378
Aridelia retux.	0.690	0.690	0.517	1.379	0.517	0.172	0.172	-	-	-	\sim	1.137
Delbergi* letifolia	1.035	1.035	0.862	0.862	-	0.172	0.172	-	-	-	\sim	4.130
Diotpyros malameryl on	1.207	0.345	0.172	-	-	-	-	-	-	-	-	1.724
Garuga pimmeta	3.276	2.758	5.000	2.758	0.690	0.172	-	-	-	-	-	14.654
Lagarstromide paruiflora	0.690	0.345	0.272	-	\sim	\sim	-	-	-	-	-	1.207
Lermet coronandelise	0.862	0.690	8.034	0.690	0.517	0.345	0.172	-	-	-	-	4.310
Mitragyme pervifolio	1.207	1.552	0.062	0.862	0.517	0.172	0.172	-	-	\cdots	-	5.344
Fterocerpus marsupium	0.345	-	0. 345	0.340	0.690	\sim	0.172	\sim	\cdots	-	-	1.897
Tectona grandis	7.069	4.138	5.090	2.951	2.084	0.517	0.132	0.172	0.172	-	-	22.930
rerninalie cranuleta	5.690	4.828	6.207	2.914	0.862	0.345	0,862	0.172	0.172	*	-	21.552
rarmimalia baleries	0.517	0.172	0.517	-	-	-	-	0.172	0.172	-	-	1.550
Hrighti* tinctori*	7.414	1.552	0.862	0.172	0.172	-	-	-	-	-	-	10.172
Mi keallameout pacier	22.069	8.966	7.414	4.230	2.931	0.690	1.034	0.345	0.345	0.172	10.345	49.449
Totel	85,691	31.593	53.278	18.447	10.861	3.102	3,272	1,205	0.861	0.172	0.345	168,784

Table Mo. 6.6 A
Dadr. and Nagem Heweli.

Teble Na. 6.6 g

Conbinad grawing atock Volume per hector. くau.										$\text { Ho. : } 1$	$\begin{aligned} & 34 \geq 26 \\ & \text { ot } \end{aligned}$	0) h*。
Speciex 0						eter el	*er (in					
	10-15	15-20	20-25	25-30	30-35	55-40	40-50	50-60	80-70	70-a0	80.	Totel
Acacia eatechu	0.57B	0, 378	0.292	$0.36 ?$	0.594	0.308	0.235	-	-	-	-	2.752
Adina carsifalid	6.067	0. 123	0.125	0.376	0.577	0.150	0.218	0.345	-	-	-	1.994
Anogaimfus lotifolis	1.434	1,433	2.993	0.116	-	\cdots	-	-	-	-	\cdots	6.276
Bombent caibe	0.022	0.016	0.082	-	0.089	\sim	-	0.299	-	-	\cdots	0.508
Bridalia rotusa	0.050	0.006	0.139	0.543	0.302	0.131	0.198	-	-	-	-	1.429
	0.051	0.192	0.279	0.441	-	0.173	0.228	-	-	-	-	1.364
Diaspyroz melenonyion	0.064	0.050	0.045	-	-	-	-	-	-	*	-	0.159
Garuga pinnats	0.183	0.398	1.294	1.081	0.432	0.157	-	-	-	-	-	3.534
Legorstrciania parwiflar*	0.036	0.067	0.065	-	-	-	-	-	*	-	-	0.160
Lambat coromandelica	0.047	0.086	0.252	0.291	0.293	0.369	0.295	-	-	-	-	1.623
Mitragrana paruifolia	0.044	0.238	0.229	0.341	0.340	0.164	0.302	-	$-$	-	-	1.658
Ftaracarpu* martupium	0.020	-	0.820	0.178	0.485	\sim	0.264	*	-	-	\sim	1.070
restona grasio	0.288	0.672	1.717	1.400	1.474	0.540	0.196	0.308	0.531	*	-	7.143
rerminelis eranultt	0.271	0.794	1.060	1.159	0.618	0.365	1.408	0.475	0.570	-	-	7.523°
ramminaiia belorica	0.002	0.022	0.142	-	-	-	-	0.380	0.700	-	-	1.266
Wrightia tinctori.	0.307	0.180	0.196	0.049	0.075	-	-	-	-	-	-	0.607
Miscalienterat mpaciax	0.942	1.131	1.811	1.619	1.651	0.545	1.276	0.562	1.012	0.633	$2.53{ }^{2}$	13.716
Total	4.438	5.886	12.639	8.261	6.982	2.911	4.621	2.349	2.813	0.633	2.53\%	52.98*

CHAPTER-VII

WOOD CONSUMPTION STUDIES

$7 . \emptyset$ GENERAL:

Wood consumption studies were carried out in Dadra and Nagar Haveli alongwith the forest inventory during the months of October-Noveraber, 1986 in order to estimate the annual consumption of wood for various purposes.
7.1 POPULATION OF DADRA AND NAGAR HAVELI:

The population of Dadra and Nagar Haveli according to 1971 and 1981 census is given below:

$$
\text { Population in the year } 1971 \text {.. } 74,170
$$

Population in the year 1981 .. 1, 93,676
Armual rate of increase in .. 3.978 population in 10 years per 100

Total no. of households in the .. 12,428 year 1981.

Average size of the household .. 5.336
Projected population in the .. 1,20,173
year 1985 (based on 3.978\%
annual increase).
Projected population in the .. 1, 44,918
year 1991
The above figures have been used as a basis for calculation of wood consumption during the year 1985 (year of survey) and projection of demand for the year 1991.

7.2 METHODOLOGY:

For conducting these studies, methodology prescribed in the Manual for wood consumption survey prepared by the Forest Survey of Irdia in 1985 was adopted. However, it was not possible to stratify the villages according to their distance from the forests or on the basis of rural and urban areas. Except for Silvassa town all other habitations are rural and they are within 6 km . from the forests. Except for 3 villages of Dadra, Demin \& Dhapsa, all other villages possess forests within their boundaries. While selecting the villages for survey proper representation was given to differert kirds of villages. Out of 68 forested villages 8 villages were selected. Out of non-forest villages 2 were chosert and Silvassa being the only urbart area was also taken up for this survey. In each village 10-16 households were selected for study ciassifying each into low income, widdle
incrifif ror uffer iriforme groups depending upon the annual income of the household. The limits of income used for classification were as follows:

Annugl income

Upto Rs. 3600/-
Rs. 3600 - Rs. $7000 /-$
Above Rs. $70001-$

Income group
Low income
Middle income
Upper income

Table below gives the list of villages with their population and no. of households selected in each under different income groups. A

Sl. No.	Name of village/ town	No. of households (1981 census)	```Popula- tion (1981 cerisus)```	No. of households surveyed			Total
				Low income	Middle income	Upper income	
1.	Galonda	431	2532	5	5	2	12
2.	Chimda	302	1647	5	5	5	15
3.	Amboli	229	1269	5	5	5	15
	Khedpa	177	866	5	5	4	14
5.	Tinoda	63	328	5	5	-	10
	Kilvani	104	560	5	5	-	10
	Goratpada	38	205	5	5	1	11
	Naroli	1071	5952	5	5	6	16
9.	Dhapsa	30	183	4	5	5	14
19.	Demiri	131	723	5	5	5	15
11.	Silvassa	1385	6914	10	10	10	30

The data on actual wood consumed for various purposes was collected by measurement of wood actually used by the households. So far as the consumption of firewod is concerried, it is based on the information furnished by the members of the households. The data was recorded in the forms prescribed in the Manual for wood consumption survey.

This data was analysed by regression analysis taking size of the household as independent variable to estimate per capita wood consumption for all the villages/town as a whole and separately for each income groups in these villegres. The formula $Y=m x+c$ was used in this estimation where x is the average size of the household in Dadra and Nagar Haveli(as determined from 1981 census figures) and m and c are the constants which were estimated by regression analysis to predict the value of dependent variable which is the per capita consumption of wood for specific uses like building construction, furniture,
agricultural implements etc. The consumption of teak and other species was estimated separately as well as combined together. For statistical analysig of date DCM MOSCAL 14025 desk calculator was used. It gives the values of correlation co-efficients, co-efficient of x, constant etc. directly on eritering the data.

7.3 ESTIMATED PER CAPITA ANNUAL WOOD CONSUMPTION BY INCOME GROUPS:

As already poirited out the households were divided into their income groups and data was analysed separately for each income group i.e. low, middle and upper. Based on the regression analysis of this vilage-wise data, per capita consuraption of wood in the territory for different income groups is tabulated below:

	Item	Species		Unit	Income group		
					Low	Middle	Upper
A) Timber							
	Huilding construction	Teak Other	wood	Cu. ${ }_{\text {If. }}$	$\begin{aligned} & 0.0595 \\ & 9.6328 \end{aligned}$	$\begin{aligned} & 0.1034 \\ & 0.7881 \end{aligned}$	$\begin{aligned} & 0.1456 \\ & 0.2152 \end{aligned}$
	Furniture	Teak Other	wood		$\begin{aligned} & 0.0003 \\ & 0.0005 \end{aligned}$	$\begin{aligned} & 0.0143 \\ & 0.0042 \end{aligned}$	$\begin{aligned} & 0.8382 \\ & \text { Neg. } \end{aligned}$
	Agricultural implements	Teak Other	wood	"	$\begin{aligned} & \varnothing .0063 \\ & 0.0081 \end{aligned}$	$\begin{aligned} & \varnothing .0078 \\ & 0.0126 \end{aligned}$	$\begin{aligned} & 0.0284 \\ & 9.0056 \end{aligned}$
Total(timber)		Teak Other	wood		$\begin{aligned} & 0.0661 \\ & 0.6414 \end{aligned}$	$\begin{aligned} & 0.1255 \\ & 0.7969 \end{aligned}$	$\begin{aligned} & 0.2122 \\ & 0.2208 \end{aligned}$
		Total:			0.7075	9.9224	0.4330
	Finuwsurd			/turnith	31.85	28.01	16.88

The above table brings out the effect of income on wood corssumption for various purposes. The total consumption of teak in upper income group is more while the consumption of other wood is more in middle incone and low income groups. In case of building constructions teak is preferred by upper income group while other woods are used by middle end law income groups. The use of teak for furniture is more in upper incone group. Likewise the use of teak for agricultural implements is less in low income groups while the consumption of other wood for agricultural implements is lowest in the upfer income group.

The table below gives per capita annual wood consumption for various purposes based on sample data. Regression analysis of this data, taking average size of the household as 5.336, gives following estimates of per capita wood consumption for the territory as a whole.

Per capita annual consumption of rood irrespective of income

A) Timber

1. Building
0.0682
0.6075
0.6757
construction
2. Furniture
0.0142
0.0831
0.8173
3. Agricultural
implements
0.0062
0.0139
0.6201
Total timber $\quad 0.0886 \quad 0.6245 \quad 0.7131$
B) Firewood

$31.2 \mathrm{Kg} /$ month

These figures show that in case of teak 77\% consumption is for building construction, 16% for furniture and 7% for agricultural implements whereas for other timber, 97% is for building construction, 2.5\% for agricultural implements and orily 0.5\% for furniture.

7.5 ESTIMATION OE PRESENT WOOD CONSUMPTION AND FUTURE RROJECTION:

In para 7.4, per capita wood consumption for different uses in Dadra and Nagar Haveli has been worked out. These figures are used to estimate present consumption of teak and non-teak timber in the territory on the basis of 1881 cerisus figures and their projection for the year 1985, the year of survey, and for the year 1991. If we assume that the present trend of wood consumption continues to be similar in the future, we can work out timber and firewood requirements for any projected future population. However, such assumption cannot be valid for a long period as the trend in wood consumption is changing very fast. The prices
of timber and firewood are increasing every year and use of teak or other valuable timber for house construction and furniture making is becomirg increasingly prohibitive. In urban areas use of cooking gas, kerosene and electricity is on the increase and there is reduction in per capita consumption of firewood in such areas. However, for a short period of 5-6 years assumption of present rate of wood consumption may not be invalid. Moreover, it helps to arrive at approximate additional requirements of timber in order to plan proper strategy to meet such requirements.

7 PROJECTED REQUIREMENTS QE TIMBER AND FIREWOOD FOR THE YEAR 1991:

On the basis of per capita consumption figures and projected population for the year 1991, the following figures have been worked out:

	In the year 1985 (1)	In the year 1991 (2)	Difference for the years $\begin{gathered} 1991-1985 \\ (2-1) \end{gathered}$	Average per annum requirements
Population	120173	144918	24745	-
Per capita coneumption of teak(cu.m)	0.0886	0.0886	-	-
Per capita consumption of other timbers (cu.m.)	0.6245	0.6245	-	-
Per capita of fimplion (Kg/p.m.)	31.2	31.2	-	-
Total corisumption of teak (cu.m.)	10647	12840	2193	365
Total consumption of other timber (cu.m.)	75048	90501	15453	2575
Total annual consumption of firewood (M.T.)	44993	54257	9264	1544

Above figures show that during the year $1885 \times \mathbf{t o}$ 1991 on an average $365 \mathrm{cu.m}$. of teak and 2575 cu .m. of other timbers would be required for new houses, furniture and agricultural implements etc. on account of increase in population. In addition to this there would be additional annual requireraent of timber for repairing existing houses, furriture and agricultural implements etc. also.

Since the year 1982-83 the Govt. have imposed a moratorium or commercial felling of trees in the forest, Before the moratorium was placed, the recorded production of timber from the forests was to the tune of $3008 \mathrm{cu} . \mathrm{m}$. and firewood to the tune of 10,000 metric tonnes per year. Almost all of this production was disposed of by auction either through the contractors or through the agency of Foreat Cooperative Sccietie日 and very little was actually available for consumption in the territory. It is thus clear that most of the needs of the people for firewood and a large proportion of timber used for house consumption etc. were met through unrecorded production from the forests. This trend is likely to continue during the period of moratorium also.

ANNEXURE - I

Glossary of local names with corresponding botanical names of common trees, herbs and shrubs fourd in Dadra and Nagar Hayeli
S.No. Local Name Botanical Name

46. Murudasing - Helicteres isora
47. Karvand - Carissa carandas
48. Nirgudi - Vitex negundo
49. Ukshi - Calycopteris floribunda
50. Rui - Calotropis gigantea
51. Kuda -- Holarrhena antidysenterica
52. Rambhendi - Thespesia macrophylla
53. Ranambadi - Hibiscus tetraphyllus
54. Chikta - Desmodium pulchellum

CLIMBERS

1. Bokarvel - Combretum ovalifolium
2. Palascel or

Yadvel - Butea superba
3. Garvel - Tinospora cordifolia
4. Nandanvel - Vitis repanda
5. Chilhar - Acacia intaia
6. Kangvel - Ventilago madraspatana
7. Toran - Zizyphus rugosa
8. Tanvel - Cocculus villosus
9. Kawich or quili - Mucuna pruriens

GRASSES

1.

Poled

- Spodiopagon rhizophus

2. Dab

- Cymbopogon martinji

3.
4.

Valchond - Vetiveria zizenoides

Gandhei - Chloris incompleta

ANNEXURE-II

BIBLIOGRAPHY

1. Working Plan of Dadra and Nagar Haveli
2. Census Report of Dadra, and Nagar Haveli - 1981.
