# REPORT ON THE FOREST RESOURCES OF CACHAR DISTRICT(ASSAM) 

REPORT ON TLE FOREST RESOURCES OF CACHAR DISTRICT(ASSAM)

Erstwhile Cuchar district of Assam is now two adminfstrative units viz. Silomir and karimyanj. Recorded forest area of the district is 2396.20 5ek.k. The forests of Cachar district in the past was the main source of timber supply to the synlet Fi strict and adjoining areas of undivided Bengel prior to 1947. Management of these forests in the past on the system of selection felling as per the choice of the purchasers caused substantial damage. Silviculture and regeneration aspects of important species were ignored in the process of exsloitation of ti:aber from the forests. Shifting cultivation altiough was practiced in the past ir Cachar valley is now very mush limited and It 1s mostly Eound in the north Cacher hills. Fiora of Cachar Tropical svergseen and semi-evergreen forests is lergely distinyuished by ocourrence of cham(rrbocarpus ghoplasha) Bon am(nanoufera spu.), Ping(Gynometra polyancra). Gamari(Gmelina arborea) and non-clumping bamboo like Muli (Malocana bambozot des).

The present inventory report is besed on a low desree of sampling and its aim is to depict tho general cofaition Of vegetation cover in the discrictsof silchar and ianlmganj. ocsurrence of bamboo is important in the distriot in view of establishnent of a paper Mill at panchgram near Badarpur by Hyncusthan Paper corporation that. The stock of bamboo from Silchar and karimyanj districteand additional stock from adjoining Mizoram state might fulfil the requirement of raw Pulp material of the proposed Paper rill. Estimation of bamboo stook on a hisher degree of sarapling is suygested in order to worle out the measures of procuring rat walpwood material for the paper dill.

Forest based industries in the districtsare not $Y$ et developed alth ough scope of running plywood and Vereer 1 ilils exist in $t$ he districts Requirenent of Tea chest by the Tea Industry in the district will increase in future because of target of higher tea produc-tion. rhsrefore, attention is required in the matter of production of more tee chest from the locally available timber resources.

Exploitation of timber and fuelwood fron the forests of patta land under the control of Givil adninistration is never carried out in a proper manner. Marking of trees koes not find any importance in the whole procedure and the Divisional Forest Officur merely controls the movenent of forest produces Ehrough issue of transit pass. In this process forest produass are extracted without any scientific consideration not only from patta land but also from tea garden areas. Present inventory also indicates that the total growing stock in the district of silchar and karimganj remains mostly unworked whereas the denand of the local people and local industries ard met from supply through other sources. Inport of timber from adjoining $S_{t}$ ates of Manlpur and Mizoram can not be consldered as the chief source of mecting the demand of the people. Therefore, it is necessary to work out a rational programue of extraction of forest produe-es through departmental agencies and meet the demand of the logal people as far as possible.

Development of tribals and other ba-ciward classes yet to occur. This is because lack of introduction of suitable schemes under N.R.E.P. \& R.L.E.G.P. Implementation of social forestry on a very large scale is possible if more funds are available under the schemes of N.R.E.P. \& R.L.E.G.P. This will not only help the improvement of vegetation cover of the district but will also help the poor and backward class of people to get an economic lift. The State Forest Department may consider the scope of imolementation of the above two scnemes on a larger scale. This report has been drafted by Sri P.Sengupta, Dewuty Director. Thanks are due to the staff who offered hard labour in the preparation of this inventory report. Thanks are also due to the Divisional Forest officers and their staff of Silchar and Karimganj Forest Divisions. All co-operation obtained from Civil Authorities of Silchar and Karimganj districts are acknowledged with thanks.

| CFAPTER: $=$ BACRGROUND INFORMATION | Para $\mathrm{NO} .$ | Page <br> 5V. |
| :---: | :---: | :---: |
| fjeed for survey | 1 | 1 |
| catchment | 1.1 | 1 |
| Locality factor | 1.2 | 1 |
| Climate | 1.2.1 | 2 |
| Temperature | 1.2.2 | 2 |
| Rainfall | 1.2.3 | 3 |
| 'Topography | 1.3 | 5 |
| Aspect | 1.3.1 | 5 |
| slope | 1.3.2 | 5 |
| Dralnage | 1.3 .3 | 6 |
| Geology, rock and soil | 1.4 | 6 |
| Rock system | 1.4.1 | 6 |
| People and their socio-economic condition | 1.5 | 7 |
| Land holding pattern | 1.6 | 8 |
| Land use classification | 1.6 .1 | 5 |
| Occupational pattern | 1.7 | 9 |
| Rural employment | 1.7 .1 | 10 |
| Education | 1.7.2 | 11 |
| Employment in forestry sector | 1.7.3 | 11 |
| Classifloation of forest by types | 1.8 | 11 |
| Cachar troplcal evergreen forests | 1.8 .1 | 12 |
| Cachar tropical semi-evergreen forests | 1.8.2 | 12 |
| Local variations | 1.3.3 | 12 |
| Forest based industries | 1.9 | 13 |
| saw milling | 1.4.1 | 13 |
| Products from saw filils | 1.9.2 | 15 |
| Utilization of capaclty of the mills | 1.9.3 | 15 |
| Eaw milling wastage | 1.9.4 | 17 |
| Saw mill sizes | 1.9.5 | 18 |
| Inputs 10 saw milis | 1.9.6 | 18 |
| Price of sawn timiser | 1.9 .7 | 20 |
| Furniture and fixture industries | 1.9 .8 | 20 |
| Bamboo mat industries | 1.9 .9 | 21 |
| cane industry | 1.9.10 | 22 |


|  | Para No. | Page ino. |
| :---: | :---: | :---: |
| Minor forest produce collection | 1.9 .11 | 23 |
| Plywood industries | 1.9 .12 | 24 |
| Firewood retall sale' | 1.9 .13 | 25 |
| Bamboo retail sale | 1.9.14 | 25 |
| rea industry | 1.10 | 26 |
| Tea cultivation | 1.10.1 | 26 |
| Vegetation in tea gardens | 1.10 .2 | 27 |
| Expansion of incustry | 1.10.3 | 23 |
| Stratificaltion | 1.11 | 28 |
| Legal status | 1.11.1 | 29 |
| Demarcation and forest s-e-ttlenent | 1.11.2 | 29 |
| Rights and privileges | 1.11.3 | 29 |
| Present managenent | 1.11.4 | 30 |
| Forest resources information | 1. 12 | 31 |
| Infrastructure | 1.13 | 32 |
| Administrative units | 1.13 .1 | 32 |
| Communication facilities | 1.43.2 | 32 |
| CHAPTER=II. INVESTIGATION AND METGODOLOGYX |  |  |
| Objectives | 2.1 | 34 |
| Photo-interpretation and mapring | 2.2 | 34 |
| Inventory design | 2.3 | 34 |
| Sampling design | 2.4 | 34 |
| Field work | 2.5 | 35 |
| Field instruction | 2.5.1 | 35 |
| CHAPTER:III: DITA ALGLYSIS |  |  |
| General | 3.1 | 36 |
| Manual processing | 3.2 | 36 |
| Processing on unit record mackine | 3.3 | 36 |
| Processing on electronic computer | 3.4 | 36 |
| calculation of area | 3.4 .1 | 37 |
| Volume studies | 3.5 | 37 |
| Volume of trees enumerated | 3.5 .1 | 39 |
| Plot volume | 3.5 .2 | 39 |
| Tree density study | 3.6 | 39 |
| Miscel laneous straturn | 3.6.1 | 39 |
| Bamboo stratum | 3.6 .2 | 40 |
| Volume studies | 3.7 | 40 |
| Miscellaneous stratum | 3.7 .1 | 40 |


|  | Para No. | Pa |
| :---: | :---: | :---: |
| Bamboo strata | 3.7 .2 | 41 |
| Volune by strata | 3.8 | 42 |
| Standard error | 3.9 | 42 |
| Sampling destgn(bamboo) | 3.10 | 42 |
| Bamboo data | 3.11 | 42 |
| Culms per hectare | 3.12 | 43 |
| Muli bamboo | 3.12.1 | 43 |
| Clump forming | 3.12.2 | 43 |
| Bamboo weight | 3.13 | 43 |
| CHAPTER. RESULTS OF INVENTORY: |  |  |
| General | 4 | 45 |
| Miscellaneous stratur | 4.1 | 45 |
| Classification of misc.stratm according |  |  |
| to Ianduse pattern | 4.1 .1 | 46 |
| Open tree forests | 4.1 .2 | 54 |
| Bamboo stratum | 4.2 | 57 |
| Yıeld | 4.3 | 63 |
| CHMPTER.V. LOGEING $\mathcal{E}$ ACCESSIBILITY STSDIES. |  |  |
| General information | 5.1 | 65 |
| treraction of forest produce | 5.2 | 65 |
| Rafting | 5.3 | 66 |
| Dopartmental timber operation | 5.4 | 67 |
| CHAPTER:VI. COIVSUTPTION STUDY. |  |  |
| Intivduction | 6.1 | 70 |
| objereives | 6.2 | 70 |
| Consumption by large industries | 6.3 | 70 |
| Consumption by small industries | 6.4 | 70 |
| Household con sumption | 6.5 | 71 |
| Methodology | 6.5 .1 | 71 |
| Estimation of us e of wood in the houseliolds | 6.5 .2 | 71 |
| Hood used for house construction | 6.6 | 72 |
| Wood requirenent of furniture | 6.7 | 73 |
| Hood requiremert' ${ }^{\text {for }}$ agricultural implements | 6.8 | 73 |
| Frood requirement for firewood consumption | 6.9 | 73 |
| Kerosene oil requirement for consumstion | 6.10 | 74 |
| Bamboo requirement | 6.11 | 75 |


| Para | Page |
| :--- | :--- |
| No. | No. |


| wood consumption for different purposes in rural areas | 6.12 .1 | 76 |
| :---: | :---: | :---: |
| Present per capita annual usage of bamboo In the district for construction purpose s in rural area | 6.12 .2 | 76 |
| Present per capita annual usage of wood consumption for different purposesurban area | 6.13 .1 | 76 |
| Present per capita annual usage of banboo |  |  |
| in the digtrict for constructionfurban area | 5.13 .2 | 77 |
| Conclusion | 6.34 | 77 |
| CHAPTER. VII. ECOEOGICAL CHANT-ES \& STATUS OF | FLORA \& |  |
| chistürbanee |  |  |
| Degree of | 7.1 | 80 |
| Quantitative assessment | 7.2 | 81 |
| CLAPTER.VIII. RTSULTS AND CONCLUSIUNS. |  |  |
| Results | 3.1 | 84 |
| Recommendations and proposals | 8.2 | 85 |
| BIBLIOSRAPHX. | - | 88 |


| $\begin{aligned} & \text { Table } \\ & \text { No. } \end{aligned}$ | Partioulars | Stratum | Page No. |
| :---: | :---: | :---: | :---: |
| 1.1 | Stens/ha.by species and dia.classes(1n cm.) | Misc. | 89 |
| 1-2 | - do- | Bamboo | 96 |
| 2.1 | Volume/na.by"species, and dia.classes(in om.) | Miec. | 99 |
| 2.2 | - do- | Barnboo | $1 \cup 5$ |
| 3.1 | Total stens (in 1000 unit)by species and dia.classes(in cra.) | Misc. | 108 |
| 3.2 | - ${ }^{\text {do- }}$ | Bamboo | 118 |
| 4.1 | Total volume(in 'ooun3)by species and dya.classes(in cm.) | Misc. | 122 |
| 4.2 | - do- | Bamboo | 132 |
| 5.1 | Distribution of nunber of culms/ha.by age and soundness | Misc. | 135 |
| 5.2 | $\rightarrow$ do- | Bamboo | 136 |
| 6.1 | Eamboo dry weight/ha. 117 tonnes | Misc. | 137 |
| 6.2 | - | Bamboo | 138 |
|  | MAPS AND DIAGRNMS |  |  |
|  | 1. Map of India shwoing the project area of Cachar District(Assam) scale: 1:15000000 |  |  |
|  | 3. Map of cachar district showling distribution of grids and forests : scale: $1^{\prime \prime}=4$ mile. |  |  |
|  | 5. Pai Chart: <br> i) Stratification of recorded forest <br> ii) Degradation of forest |  |  |
|  | 6. Bax Chart: <br> i) Percentage distribution of bamboo by culta sizes. <br> 11) bamboo weight and tree volune per by stratum. |  |  |

## CHETER: I <br> BACKGROUD INFORHATION

1. Need for survey:
of A\&bam
Thegeographical area of undivided cachar district, is 6941 km 2 and reported forest area under Forest Departinent is 2396.20 km 2 . The primary need of undertaking the present survey is to assess the forest resources of the district along with infrastructures available for forestry planning in future. Presence of a number of forest based industries in the district have impact on local employment. Current study also includes the assessment of these industries and incorporates various data in this regard for future planning of such industries. pata preserited in this report may be utilised by state Forest Department to levelop a data based plan in forestry sector and monitor the changing situation in the forest cover of the dist-rict.

### 1.1 Catckment:

The principal river of the district is Barak which rises from the hilly tract of ivagaland and flows through the northern boundary of the district along Manfpur state. This river joins Jiri river and turns towards west and flows in a tortueus course and touches Badarpur and silchar towns. The river Barak divides into two courses namely surna and Kushiera. The length of the river is nearly 187 km in Cachar district.

Jiri river rises from north Cachar hills and flows about 117 km . to join Barals river. River Longlchas rises from the southern slopes of the hilly ranges near falflong and joins Barak a little to the west of Laklypur village. other important rivers are Jnatinga, Dhaleswari, Longai, Sonai, Moniarkhal, and Katakhal etc.

Jhatinga river rises south of Halflong and flows west and south through hilly tracts and joins Barak. Dhaleswari river rises from the Mizo inils and joins Barak a little to the edst of Badarpur.
1.2 Locality factor:

Various locality factors are mentioned in the subsequent paragraphs.

### 1.2.1. Climate:

Excessive humid climate is the characteristic of cachar
valley. The climate is opressive during summer. The rainy season is marked by heavy rainfall when atmosphere remains surcharged with moisture. Rainy season starts from the month of may and continues upto october. 74\% of annual rainfall is received during this period. In october, nights are cooler but days are very hot. From November the winter sets in Cachar. Light showers in January and February make the weather cooler.

### 1.2.2. Temperature:

High day temperature is noticed from April and continues upto october. Showers in ralny season do not bring any appreciable change in day temperature when $h$ unidity increases very high.

Weather reports from Kumbir gram Meterological Centre, Silchar are furnished below :-

| Year | Month | $\begin{aligned} & \text { Mean max. } \\ & \text { In " } C \end{aligned}$ | $\begin{aligned} & \text { Mean min. } \\ & \text { in } c \end{aligned}$ | Relative humidity in percentage(\%) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 |
| 1980 | January | 25.0 | 11.2 | 76 |
| 1981 |  | 25.7 | 12.5 | 78 |
| 1982 |  | 27.2 | 12.4 | 75 |
| 1983 |  | 24.6 | 11.0 | 73 |
| 1980 | February | 26.5 | 13.9 | 84 |
| 1981 |  | 26.3 | 13.9 | 76 |
| 1982 |  | 25.6 | 12.4 | 75 |
| 1983 |  | 27.1 | 12.2 | 69 |
| 1980 | March | 29.7 | 17.7 | 74 |
| 1981 |  | 29.5 | 16.9 | 73 |
| 1982 |  | 30.5 | 16.3 | 65 |
| 1980 | April | 32.3 | 20.7 | 78 |
| 1981 |  | 30.0 | 19.6 | 75 |
| 1982 |  | 29.1 | 18.9 | 79 |
| 1980 | May | 30.0 | 21.8 | 84 |
| 1981 |  | 30.9 | 22.0 | 82 |
| 1982 |  | 32.8 | 27.2 | 77 |
| 1980 | June | 32.5 | 25.3 | 87 |
| 1981 |  | 32.9 | 24.2 | 82 |
| 1982 |  | 32.1 | 24.3 | 86 |


| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 1980 | July | 32. 5 | 24.8 | 85 |
| 1981 |  | 31.3 | 24.5 | 89 |
| 1982 |  | 31.6 | 23.4 | 90 |
| 1980 | August | 32.9 | 24.6 | 86 |
| 1981 |  | 32.5 | 24.7 | 87 |
| 2982 |  | 32.7 | 24.7 | 82 |
| 1980 | Septemper | 32.3 | 24.0 | 87 |
| 1981 |  | 32.8 | 23.3 | 83 |
| 1982 |  | 31.9 | 23.8 | 87 |
| 1980 | october | 30.7 | 21.0 | 81 |
| 1981 |  | 32.4 | 21.7 | 77 |
| 1982 |  | 32.1 | 21.2 | 77 |
| 1980 | November | 30.9 | 16.0 | 81 |
| 1981 |  | 31.3 | 17.6 | N. $\mathrm{A}^{\text {. }}$ |
| 1982 |  | 29.0 | 16.8 | 76 |
| 1980 | December | 28.0 | 13.0 | 73 |
| 1981 |  | 27.8 | 13.9 | 74 |
| 1982 |  | 26.1 | 12.7 | 78 |

Average maximum and minimum temperature and humdity for 1980,1981 and 1982 are $f$ urnished hereunder:-

| Year | Average max. temperature 1n ${ }^{\circ} \mathrm{C}$ | Average mindmum temperature in $c$ | Average humilidity in percentage(\%) |
| :---: | :---: | :---: | :---: |
| 1980 | 30.2 | 19.5 | 80 |
| 1981 | 30.2 | 19.6 | 79 |
| 1982 | 30.1 | 19.6 | 78 |

### 1.23. Rainfal 1 :

Rainfall starts with light showers in January and February. Heavy ralnfall occurs between May to october when nearly $74 \%$ of annual rainfall occur. Monsoon is perceptible from April and lashes on the valley from May and maximum rainfall occurs in June. The rainfall data for stations at silchar and Kumbhigram are furnished below s-


Annual average rainfali in some selected stations are furnished below:-

| Stlchar: | $3101.38 \mathrm{~m} . \mathrm{m}$. |
| :--- | ---: |
| Longai Valley |  |
| B.E. $3710.12 \mathrm{~m} . \mathrm{m}$. |  |
| Kailine T.E. | $4206.63 \mathrm{~m} . \mathrm{m}$. |
|  | 4511.56 man. |

anmal
Average, ralnfalı in Zundivided cachar district is $3795.05 \mathrm{~m} . \mathrm{m}$, calculated on figures of last decade.

## Tapography :

The Yndivided Cachar district is a heterogenous land mass composed or high hills, valleys, level and low lands. Borail hills in the district is a conspicuous land feature in as much as this hill runs almost from south-west to the north-west across the district and forms a continguous wall of mountains. Ridges and valleys give a typical land form. [ifghlakandi sub-division. represents typical valley area. In ganeral, the topography represents a number of ridges in the district of which Bhuban hills may be mentioned. Bhuban hills emerge from Mizo hills and runs along the eastem boundary of the district. The topography in karimganj and adjoining areas is gentle but number of cmall. hillocks are found with exposure of rock outcrops. Chatachurra range is another important range whose summit is 620.87 metre. Near Badarpur the terrain is hilly. " 2 The general alritude in this part is $304 m t r$. above sea level. These stall hillocks are known as Badarpur hilis which are 30 mtrs. or more in height. There are very low hills in fitghlakendi subadivistion which are separated from each by considerable tract of plain land.
1.3.1.-

## Aspect:

The tract under survey has various landforms like ridges, spurs (gentle to steep) valieys and low lands. The country as a whole is highly undulating except in fighlakandi sub-division, where the land form is of valley type. All aspects were rocorded from field.
1.3.2.

## Slope:

It may be interesting to note thet the slope percentage In the project area are within slope percentage 30. Distribution of surveyed areas may be grouped according to slope percentage as .EOLlows:-
slope upto $30 \%$ Area : $50.27 \%$

| $" 31$ to $45 \%$ | $: 22.25 \%$ |
| :--- | :--- |
| $" 46$ to $60 \%$ | $=17.34 \%$ |
| $"$ above $60 \%$ | $: 10.14 \%$ |

1.3.3.

Drainage:
The frincipal river is Barak in the area fising from Nagaland and it flows westerly and southerly to Tipaimukh when it turns sharply to the north. After its junction with the Jiri river it turns again to the wast and takes a zig-zag collrse across the midale of undivided Cachar district till Dadarpur. At Hanitikar Barak is. divided into Kushiara flowing intio Sylhat district of Bangladesh ana Surma flowing along boundary of the district. Numerous tributeries feed the Barak and those are the Jiri, the Chidri, the Jhatinga, the Sonal, the Dhaleswari, the Katakhal, the Rulkhi, the Shargra. The principal tributaries of Kushiara in Karimganj sub-division are the Longal and the singla. The rivers are hiliy and water holding capacity of these rivers being limited flood occurs in many occasions.

Geology, rock and soll:
Geological formature in the area include various groups like Precambitan, Eocene sediments and oligomio-pliocenc sediments and unclassifled older and newer alluvium.

## Rock system:

Geological succession in the area can be classified in the following sequences:


# Oligociene Earail group Rengi formation Bedderd massive sandstone Jenurn formation Shale,sandy siale. carboraceous shale. <br> Laisong formation well bidded compact flaggy sandstone. 

-     -         -             -                 -                     -                         -                             -                                 -                                     -                                         -                                             - geosynctoral

Eocene Disang group Shale formation Sylhat Sandstone,sythat - - - - -
precambrian Sterllongseres (not classified) Quartzites, Phyllites, schirts.

The tertiary sediments resting over weathered precambrians are snocessmily Eocene Disang(geosjnclinal)group of lower territiary sequenceand it is overtying Barail, Surma and Tispam of upper territiary scquence.
41.5 People and their socio-economic condition:

Tho total population of Cachar district(undivided) is 17.13.318 as per 1971 Census. No consus data for 1981 are available. The total population of nssam as per 1971 Census is 1,46.25,000. So, In Cachar nearly $11.71 \%$ of total population are found. The population detailis as per 1971 census are furnished bslow:-

| Year | District | Sub-division. | Male | Fernale | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 | Cachar | Silchar | 4.39.434. | 3,94,081 | 8,25,515 |
|  |  | N-Karimganj | 3,01,654 | 2,86.474 | 5,32,108 |
|  |  | Wilighiakandi | 1,60,038 | 1,47,657 | 3,07.695 |

Taking into consideration of $2 \%$ anuial population growth, the population in the decade ending 1981 may be 20,56 ,000. The density of population as per ly7l Census was as follows:

| Assam | $: 186$ |
| :--- | :--- |
| Silchar | $: 218$ |
| Hignlakandi | $: 232$ |
| Cachar | $=246$ |
| fdrimgany | $: 316$ |

It thus appears that the undivided cacher district is densely populated compared to other parts of Assam excepting Karnrup and No:gong districts which are also densely populated. In Cachar district(undfvided) the distribution of rural and urbaj population as per 1971 Census was as rollows:-

| Silchar | : | Urban (\%) | Rural (\%) |
| :---: | :---: | :---: | :---: |
|  |  | 6.74 | 93.26 |
| Karimganj | : | 9.96 | 90.04 |
| Failakindi | : | 7.20 | 92.80 |
| Cachar(undivided) | : | 7.93 | 92.07 |

### 1.6 Lana holding pattern:

Inand holding pattem does inducate that nearly 64.75\% holding falls within the category of 0.1 to 1 hectare. So, smalı farmers in an agrarian economy constitute a major portion. $0.55 \%$ of the holders possess land more than 10 ha. Under such circumstances the questionfor under employment or uneraployment In rural sector are likely to be severe. Further, cultivacton of Rabi crops is limited on account of the following :
i) Indtation of suitable land
ii) lack of irrigation facilities
i1i) shortage of quality seeds.
The cultivation of rabi crops inciude the pulses,
wustard, Potato, ineat and winter vegetables. Programe of growing mung, Soyabean, grounkut was taken up during 1933-34. Sugarcane cultivation is also important as a cash crop. Sugar productiond in 1930-81, 1981-32, \& 1982-83 was 17,050 quintals, 43.344 ant . and 37,455 quintals respectively. Some cultivtable lands are irrigated but $70 \%$ of the area depends on ralnfall. So, lack of lrrigation remains as a major impediment in rural economy. Institutional device like Pani Panchyat was contemplated to foster co-operative movement among the farmers under 20 point programe. In Cachar district $82.12 \%$ holaing is owned privately and only $12.77 \%$ holding is rented out for cultivation where farmers of marginal and small group may not be able to arrange proper inputs and production may not be encouraging. However, in omed holdings similar limftations do exist. Land ceiling relating to agricultural land and implementation of relevant laws by removing legal and aministrative obstaches may bring a considerable change in rural econorny.

### 1.6.1 Land use classification:

In undivided Cachar district the land use pat-ten is as follows:

| Category of use | silchar (ha.) | Karimantiona.) | H1lakandi (ha.) |
| :---: | :---: | :---: | :---: |
| Nrea under forests | 1,43,270 | 50,469 | 74.059 |
| Land not avallable for cultlvation. | 73,622 | 37,870 | 9.288 |
| Permanent pasture and other grazing land | 3.150 | 2,830 | 550 |
| Land under misc. <br> tree crops | 21.4.10 | 7,941 | 3.525 |
| Cultivable waste land | - 520 | 3.125 | 327 |
| Total croppea area | 1,36,289 | 1,06,604 | 51.328 |
| Gross cropped area | 1.26.745 | 96,775 | 54,551 |
| Net cropped area | 1,04,558 | 71.435 | 40.806 |
| Double cropped arca | 22,187 | 25,340 | 13.745 |

Lund under misc.tree crop does not come under the jurisdiotion of forest department. CiPil adninistration administer the affalrs of this category of land. It would appear that occupation in livestock, fishery and forestry do contribute noxt to agriculture. Total farming fahilles are 2.15 lakhs alstributed over 15 development biocks. Non worker in the area are 1,220 $12,20,372$ nos. as por 1971 census. This figure would be raised by $2-3 \%$ at the cnd of 1981.

### 1.7 Occupational pattern:

Occupational pattern in undivided cachar district shows that agriculture is by far the most comon occupation. There are 2.15 lakhs of farming families. Distribution of workers is as follows:

| category | No. | percentage to total population |
| :---: | :---: | :---: |
| Cultivators | 230358 | 13.30 |
| Agricultural Labourers. | 98228 | 5.73 |
| Livestock, fishery and forestry | 60531 | 3.53 |
| Minning es Energy | 105 | 0.006 |
| clean facting other than household indu | ${ }_{\text {stry }}^{y 931}$ | 0.57y |
| Construction | 5573 | 0.325 |
| Manufacturing in household industry | 7917 | 0.462 |
| Trade \& Commerce | 23835 | 1.39 |
| Trausport etc. | 11885 | 0.693 |
| Others | 44.54 .3 | 2.60 |

### 1.7.1 Fural employment:

Rural employment is mainly baged on agrioulture. The agriculturat laboureis constitute nearly $5.73 \%$ of the total population. Employment on this account is not always wall remunerated and under employment is also noticti. Various Government shhemes during slath five Year Plan contributed towards rural mployment. sthenes ifké I.R.D.P. and N.R.s.P. made a considerable rent on rural conony by generating employment partiaulafly zor weaker section. The beneficiaries under the promrane of I.《.D.P. coula engage themselves for cialrying, poultry, piggery, scriculture, fisheries, cottage Industries wherein creation of assets employment was generated. The scheme was framed to cover $25 \%$ of the rural people of 15 blocks in fillchor ard karimganj. The beneficiarles inciuded small and margimal famncrs,agricultural and non-agricultural 3 labourers.rural artisians and craftsmen. Out of a target to cover 4500 families only 1800 families were covered by the scheme upto 1984. Improvement of agricutture and utillatilon of falaok lands created rural employment. However. such employment being seasonal visual effect in economy cannot be appreciated at the monont.

Under TRYBEM Scheme rural employnent in various traden have been attempted. This scheme is framed to provide employment for youths after proper training in trades like carpentry, Blacksmithy, Glazed pottery, Fishing, net mating, talloring, bamboo and Cane articles making ctc. This scheme will help rural youths who are school drop out and have no specific employment opportunity in rural sector. In Cachar (undivided) district it was targetted to create 9 lakhs of mandays unaer M.R.T.T. Scheme only in 15 blociks. Nearly $10 \%$ of the total fund under N.R.E.P. was avaliable for social forestry works.
 Employment Guarantee) 88 Gaon Panchyats aimed to create 100 maridaya of employment to 25 landicss ruralworkars of 25 such families toking one form eafh family. The scheme of Blo-gas progremme is implemented by Agriculture Department. Khadi Viliage Comission. This mould help the rural peaple to uge non-conventionel enexgy and also woula help forast conservation in the long run. The gas will be source of fuel for cooking, lighting in rural araa. Large quantitics of animal dung, agricultural wastes plant residucs will be uti」ized in this venture. Tosal livestock in the area is 1445000 nos. as per 1971 Census. Comunity bio-gas phants have also beon contemplated.

## Equcation:

Litoracy in undivided Cachar is $30.57 \%$ ag against $29.14 \%$ in fissam. Scneduled tribes In Cachar inciude Bormans who constitute $1.75 \%$ 1n silchar sub-division, $0.15 \%$ in Hailakandi stab-uivision and $0.10 \%$ in Karimganj Divn. Leteracy among this sparp of schetuled tribe(73A0nos)is 30.45\% in 1971. Scheduled castes in Cachar is $12.10 \%$ (1,01,124) and literacy among them is $27.64 \%$. The literacy in goneral is $30.57 \%$ so, scheduled castes and scheduled tribes are not lackingb behind in education.

Erapdoyment in forestry sector:
Employmant in forestry soctor generates on account of forestry operations in timber harvesting and dfforestation works. In Silchar and Karimganj Forest Divns. forestry operitions are virturlly stopped. No Eelling of trecs is carried out escepting sone dopartmental operations taken us in selected areas. Thus employmont generaion in forestry sector in rural areas is virtually stopped. Departmental timber operations over $35 \mathrm{ha}$. can generate approximatcly 8000 mandays in a year. Since fellindis virtually closed employnent on account of departmental timber hafvesting in cacnar can be nearly 20,000 mandays. Afforestation programaes in silchar and Karimganj Divisions do not provide scope for farge soale employment. It may be worthwhile to mention that empioyment is also generated in forestry through N.K.E.F.schames, normal afforestation, tendingff pEantations and road malntenance works. These inciude mostly unskilied job and annual scope of such employmatht is nearly 30,000. Social forestry programme is yet to take such dimension to create large scale rural employmant. schemos like I.R.P.P., R.I.E.G.E. have no big programme in forestry sector state of jest bengal and others.

## 1.8

clasnification of forest by tymec:
The forests in cachər district(undivided) can be chassified into two following types as per available records:
a) IB/C3 Cachar tropical evergreen
b) $2 \mathrm{~B} / \mathrm{C} 2$ Cachar tropical semi-evergreen.

These types of forests do not occur in compact blocks over extensive areas. Unregulated Eelling before rosservation of forests and inadequate regulated feliing during post reservation period:'havc been tile causative factors in the present trend of distribution of the two forest types. Besides these, there are factors like soiland topograthy which also contributed enough in distribution of forest types.

### 1.8.1 Cachar tropdcal everareen foresto:

These forests are Largely composed of evergrcen species. The upper storey is composed of Cham(Axtocarpus Chaplasha) Bon An(Mangifera spe.) Sutrong (fophonctolum fibriatum) Moricha sundy (Alscodophene owdenii). The midale storey is represented by Jan(Euqenia fruticosa)Kurta(calonhyum dolvanthum) Karol (Kavea floribunde)Ping(Eynomptra polvandra)Dhuna (Canarium resinifrum)Nageswar (Mesua feria)etc. In the lower storey Agar(Mquilaria agolocha) ChaLmugra(synocardia ordorata) are important. Bariboos are not always conspicuous but Dalu (Talnostachyurn dilis) and pache(Dcndroclumus hamistond)occur in certain places.
1.8.2.
1.8 .3

Cachar tropical semi-everareen forests:
These forests have both overgreen and deciduous species whiclu occur athe tops of the ridges and hilis. This forest type is characterised by deciduous species like Garjan (Dipterocarpus tarbinaiis), Gamari (Gmehina arberea) Korol (A1bizzia mrocera) Haldu(Adina cordifolia) Gugal(Dioshyros tormosia). Evergreen species tnat occur along with deciduous species are Karulikuyes
 Rata(Rmoora watнichii) etc.

Local variations:
Generally forests at high level i.e. on the top of ridges and hills consists of mediun to dense patches of Muli (Malocona bambusoides) and widely distributed trees. The forest is open type. Records show that these areas were subjected to shifting cultivation during past. Along with bamboo trees of Gamari (Gmelina arborea) Moricha-sundi (Alscodepheni) Poma(Cedrela febrifuga) Jam(Eugenfa Eruticosa) Hotia (Chukrasia tabularis)Gandori (Cinnamomuin ceciodophene)Ratn(Amoora wallichil)etc. are also found.

In lower hills and ridges the forests are located along stream and river banks and tree belt is often more than 1.5 km . in length. The vegetation is ridh wherever the shifting cultivation in the past did not encroach. The most fmportant trees are Kadam(anthocephalus cadamba) Kurta(calophythum polyanthum)Chalta(Dllenia indica) Ramdala(Duabenga sonneratiodes) Poma(Cedrella febrifuga) Ping(Cynometra polyendra)etc.

In the plains drained by rivers Barak, Sonai, Dhaleswari, Longai etc. forests are found in patches where principal species are Simul(Bombax cefiba)and Tula(Tetramelus nudiflora) Bahera (Terminalia belerica). The forests are very open in the first soorey. The second storey is rather closed and consisting of Jarul (Ląerstroemia floserwqinae)Poma (Cedrela febrifuga) Cham (Artocarpus chaplasha)etc. In swampy areas this forest is charatemrised by presence of Ekra and Khagra. Occasional. stunted Jarul (Lagerstroemia Elostaginae) may also be found.

Bamboo occurs on the understorey in varlous areas of the forests. described already. Ifuli(Malocanna bambusoides) is the main varieties in thys area. In sone areas bamboos are dominant and has replaced the tree forests. In rich clayee and humus soil of evergreen and semi-evergreen forests cane may be found in thorny thicket in low lying areas. Cane bearing areas have been reduced appreciably due to settlement and cultivation.

Forest based industries:

No forest Industries have flourished in the district excepting Saw Milling. Other forest based industries do not playfiny significant role in local economy. Status of such industries are also studied to give an over-all picture of then.

Saw Milling:

Saw Milling is the principal forest based industry in undivided Cachar district. Besides, other forest based industries include cane industry, furniture making industry, bamboo mat making industry, etc.

In 1984 there were 42 satw milling units of which nearly 50\% are located in silchar and adjoining areas. In Karimganj there nearly $15 \%$ of the total saw mills. Balance $35 \%$ of saw Mills are distributed in various places like Badarpur, Hilakandi Katakahal, Lala Bazar etc. All these saw milling units are privately owned and $25 \%$ of the them are registered with s.S.I. Products from these saw mills are utilized by Iocal people but certain quantity is exported outside the district. Many saw mill owners import logs from Manipur and Mizoram to run their mills. Source of supply of logs in these saw mills indlcate dual source i.e. from Government and private individuals. Locations of the saw mills also show that advantage of rail and road exists for disposal of produce. Minimum machinary installation and with least labour engagement the saw mills produce annually 500 m 3 to 1500 m 3 . Sarmple survey of 17 saw mills at places like silchar,karirnganj,Badarpur indicate that a large quantity of sawn timber is exported outside the state of Assam. Various kindis of spedies are sawn which include Gamari (Gnelina arborea)Kurta(Calophyllum polyanthum)Rata(Amoora wallichii) Ramdala(Duabanga sonneratiooides) Jam(Eugenia fruticosa)Am(Mangifera species), Cham(Artocarpus chaplasina) Poma(Cedrela febricosa)Kadam (Anthocephalus cadamban)and ocmers. Souxces of suply of logs of various species to the mills are :-

1. Supply through brokers or crop holders at mill site this include inside and outside sources of Cachar.
2. Supply from Hizoran or Manipur by direct purchase.
3. Supply from local sources including private lands by direct purchase.
4. Supply from Governient Defot.by direct purchase. This includes supply from depots of Forest Department in adjoining district. rt is interesting to append the relevant information regarding proportion to utilization of various types.

| Species | \% to total supply input of logs in mills. |
| :---: | :---: |
| Chann(Artocarpus chaplasiza) | 1́O¢15* |
| Gamar (Gmeline 뵤borea) | 10-15 |
| Jam (Eugenia fruticosaj) | 10-15 |
| Ramdala (Duabanga sonneratioides) | 10-15 |
| Ponal Cedrela febrifuga) | 10 |
| Kerdam (Anthocephalus cadamba) | 5 |
| Rata(Amoora wallichii) | 10 |
| Kurta ( Calophyllun polyanthun) | 10 |
| Others(various soft wood | 20 |

Products of sawing includet scants, planks and beams. Materials exported outside Assam are despatched in the form of beams for ultimate sawing into proper size at various destination points. The working of the mills are underrated owing to various unfavourable conditions. Tabular statement indicates the rate of under utilization of the installed capacity of saw mills.

| Mi̇I | $\begin{aligned} & \text { Gapacity } \\ & (\mathrm{m} 3) \end{aligned}$ | Fotual Qutturn | $\begin{gathered} \text { Utidization } \\ (\%) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Habid Saw Milis. Hailakandi | 25.71 | 1500 | 58 |
| Cachar Saw Mills.Hailakandi | 1050 | 750 | 71 |
| Bharat Timer, Karimganj | 1260 | 672 | 53 |
| A.R.Majumdar Sav Mill, Silchar | 800 | 650 | 81 |
| Sreana Saw Mipis, Silchar | 1200 | 900 | 75 |
| Eastern Saw M11Ls, Karimganj | 1500 | 150 | 10 |
| North Eastern Traders Saw Mills, [1atijuri. | צ64. | 714 | 74 |
| Surma Va+ley Saw Mitis, Cacher | 2110 | 1125 | 53 |
| Super India Natch Co. Pvt. Ltd. silchar | 2750 | 2200 | 80 |
| Annapurna Saw Milis, Badarpur | 630 | 500 | $7 y^{\circ}$ |

## 1.9 .3

Utilization of canacity of the Milis :
Under utilization of capacity is indication of various problems which include :-

1. Less suppiy of raw rim material like wood.
2. Labour trouble.
3. old machinaries.
4. Lack of local market.

Supply of raw material from sources within undivided Cachar district is totally limited in view of suspension of selling coupes to the purchaser. Very littie quantity may be available from sale of logs from depots. As a result of this import of logs from Manipur and Mizoram is essential to run the saw mills. This kind of import of logs in various milis is upto $50 \%$ of the total requirement.

Transportation of logs from distant places may not be sufficientiy reuunerative for small saw mill owners who depend on local market. Export of sawn prices outside the district or state may be remunerative if the mill owners can develop such contact and develop marketing of sawn prices of Gamar (Gnelina arborea). Cham(Artocarpus chaplasha)Bonsum (Phoebe lanceolata) Teak(Tectona grandis) to fetch good price by export. Situation of supply of raw materials like wood to the saw mills indicate the following situation :-

| Source of supply | $\%$ | Remarks |
| :---: | :---: | :---: |
| Local supply of logs | 30 | - |
| Local and import of logs | 40 | Mizorarn-40\% of the total requirement Iocal:60\% |
| Largely import of logs | 30 | Mizoram: 50-60\% |
|  |  | Manipur: 25-35\% |

Contribution of other inputs like labour, power, machinaries in the mill was as follows in 1983 :

| Saw Alils/Machinaries | Power |
| :--- | :--- |
| Horizental saw $=1$ No. | All electrically operated |
| Vertidal band saw $=1$ No. | No use of captive power of |
| wdmeh with trolley= 1 No. | diesel engine. |

Commanly the horizontal saw is utilized for log braking. The motive power for horizontal saw may be varying between * $15 \mathrm{H} . \mathrm{P}$. to 20 HPP . Trolley fitted with wimch used for carrying the bigger sized logs for breaking by the horizontal saw. The motornepower for the operation of trolley fitted with winch varies between $10 \mathrm{~K} . \mathrm{P}$. to $15 \mathrm{H.P}$. Vertidal band saws are utilized for production of planks, scants and small sized beams. The metric power in this case varies between $10-15 \mathrm{H} . \mathrm{P}$. On avarage $: 5 \mathrm{H} . \mathrm{P}$. or $50 \mathrm{H} . \mathrm{P}$. is required in one saw milling unit.

Varlous sizes of scants. planks and beams that are produced commonly are as follows:

| Planks $:$ | $15.24 \mathrm{~cm} . x$ |
| ---: | :--- |
|  | 12.70 cm. |
|  | 20.32 cm. |
|  | 2.54 cm. |
|  | 10.16 cm. |
|  | 22.54 cm. |
|  | $30.48 \mathrm{~cm} . x$ |
| cm. | 2.54 cm. |
|  | 2.54 cm. |


| Scantes: | $5.08 \mathrm{cm}$. | 5.08 cm . |
| :---: | :---: | :---: |
|  | $5.08 \mathrm{cm}$. | 6.35 cmi. |
|  | 7.62. cra. $x$ | 7.68 cm. |
|  | 7.62 dir. $x$ | 5.0 cin. |
|  | 10.16 cma , $x$ | 5.08 cma . |
|  | 10.16 cra . x | 7.62 cm. |
|  | $10.16 \mathrm{cm}$. | 7.68 cm. |
| Beams: | 30. $8 \mathrm{cm}$. | 7.68 cra |
|  | $22.86 \mathrm{cm}$. | 7.68 cm. |
|  | 30. $8 \mathrm{cra}-\mathrm{x}$ | 7.63 cm . |
|  | 23.86 cm. $x$ | $10.16 \mathrm{cm}$. |

## Saw milling wastare :

On account of production of the above sized timber the wastage of wood varies considcrably. The wastage is normally $0 \%$ but it may exceed this limit. sawing wastage in a fev saw mills are furmished below :


## Saw Mild Sizes :

Distribution of saw nills in various size classes as furnished belor is indicative that rost of the saw Mills are small sized.

Distribution of data class-rytse


Total production th 4.2 saw 4 - railis is 35576.77 m 3. Produces from these sam mills are marketted*in the foldowing manner : -

| Market | $\%$ ef_eroduction | $\%$ of satminis |
| :--- | :---: | :---: | :---: |
| Local | 100 | 70 |
| Local | 50 | 30 |
| Outside district \& state | 50 | 30 |

1.9 .6

Inputs in saw mills:
Cost analysis of the saw mill operathon can be briefed as under indicating the prices of various inputs:
 Category of logs


Garnar (Gnelina arborea)
Cham (Artocarplis chaplashe)
Ramdak (Duabanca sonnertiones)
Kusta (Cadophylum polyanthum)
rata (Amoora walifohti)

Rs. $775-900 /-$
Rs. $635-840 /-$
Ris. $592-650 /-$
Rs. 435 - 500/-
Ps. $450-500 /-$
zabour input in the mille is nomally too less in. nubber. Usually the railis are operated by hired labourers including skilled and unskilled types. A typical establishment would constitute the following :

$$
\begin{array}{lll}
\text { Office gtaff : } 1 \text { No. } & \text { : } & \text { B. } 550 /- \text { per month. } \\
\text { Skilled labourecs } 2 \text { Nos. : } & \text { \&. } 12 /- \text { per day } \\
\text { Unskilled labourers: } 9 \text { Nos. } & \text { B. } 9 /- \text { per day. } \\
\text { Hatch \& ward staff : } 1 \text { No. : } & \text { 3. } 320 /- \text { per month. }
\end{array}
$$

Usually a mill is operated 270 to 290 days in a year depending on the availability of power, logs and labourers. Normally in each day a mill runs not more than 8 hours. However, operation is directly dependent on tho supply of lags. Scarcity of labour(skilled and unskilled) is nozmaliy pot a bottleneck in the induatry but disputes : . . may cause some dialocation in works. Generally local people are employed. in the mills to avert the derand of ahelter from the end of the labourers. In view of limited avallability of timber from forests and lifited production capacity of alw mille, the export of timber from various areas may be regulated to meet the local demand and control of the price rise of timber. Export of timber(sawn)from Silchar. Karimganj,Badarpur is repponaible for price hike of sawn timber and more removal of trees from patta lands. Records show that local sowing (by hand) ia permitted by DIVisional Forest Officer to the land holders for their use. The ultimate consumer of their sawn pieces is not exactily known and people may be availing the local situation and explolt trees for trading only. Handsawing in the vicinity of reserved forests may not be allowed to stop the stealthy removal of trees of Govt.forests. No account is available regarding production and end use of sawn pieces produced from Patta land. Existinghets and rules In this behalif cannot on-force any stringent measurel to crub this sort of activity.

Besides sawn: pleces, saw dust and off cut produced In the mills are sold in market. Saw dust is used as a fuel in rural areas. Price of saw dust varies from ps. $2 /-$ to is. $5 /-$ per quintal.

Price of sawn timber:
The price of sawn timber of various categories are as follows as per prevalling market rates of 1983 :

| species | Price in is. (per m3) |
| :---: | :---: |
| Cham(Artocanpus chaplasha) | 1050-1250/- |
| Gamar (Gmelina afborea) | 1500-1600/- |
| Jam (Eugenia fruticoga) | 700-750/- |
| Poma (Cedrella febrifuga) | 700-800/- |
| Ramdala(Luabang sonneratioides) | 600-650/- |
| Khokan (Megua ferrea) | 1425-1500/- |
| Kusha (Colophythum polythum) | 385-425/= |
| Sundt ( 1 lseodaphne spp.) | 1470-1500/- |
| Sutrang(Lophopitohem fibriatum) | 750-800/- |
| Rata ( Amoora wabilichif) | 700-800/- |
| Bahra (Terminatia belerical | 650-70u/- |
| Misc. soft woods | 350-450/- |

Locations of the saw mills are largely uriman with infrastructures like power supply, road and rails. A large number of saw milts in silchar, Badarpur, Karimganj support this observation. Only a few saw mills in Lala Bazar. Hailakandi, Hatijuri comes within rural sector of the area. The proportion of rural and urban locations of saw mille may be 40:60. Productivity of urban saw mills $1 s$ hibber on account of reasons like better power supply. better market and easiness to export produce outside the district being nearer to rall heads. Rail heade at silchar. Badarpur and Karimgany offer facility of export of timbers and logs in distant areas. Details of export of these and other forest produce are discussed separately.

Furniture and fixture industries:
Local consumption of sawn timber can be noticed in furniture and fixture industries. Like other places of India this industry is also disorganized and its position is rather uncertain. Sample gurvey of a few establishment under this category of industry was undertaken in selected areas like silchar, Karimganj etc.

| Strength of eatablishmerst | Anumal wurking days. | Annual consumption 1n.m3 | Wage rate per day | Timber used |
| :---: | :---: | :---: | :---: | :---: |
| 3 Nos. (including owner) | 240 | 20 | RS. $12-15 / \sim$ | Gamar, Sundi. misc. Mood. |
| 2 NOE- ${ }^{(10)}$ ) | 250 | 1.5 | ks. $12-20 /=$ | Cham, Gamar. Sundi. |
| H Nos. (Owner) | 250 | 1.5 R | Rs. 600/per month | ```Gamar,Sundi. Ramdala``` |
| $2 \text { Nos. (including }$ | 180 | 7.5 | Fs. $15-18 /=$ | Gamar, Ramdala. misc -wood. |
| 3 Nos. ( -do- ) | 240 | 2.4 | Rs. 1 5-25/- | $\begin{aligned} & \text { Gamar, Sundi, } \\ & \text { Tula, Ramdala, } \end{aligned}$ |

Survey indicates that owners of the furniture and fixture establishments invariably participate in working. Analyais of the collected data further indicates the following:

Annual consumption

> Average strength (including owner)

Percentage of total sampled unit.

| Upto $5 \mathrm{m3}$ | 2 Nos: | 35 |
| ---: | ---: | :--- |
| $5-10 \mathrm{m3}$ | $3-4$ Nos. | 50 |
| $10-15 \mathrm{m3}$ | - | N 11 |
| $15-20 \mathrm{m3}$ | $3 \mathrm{Nos}$. | 15 |
| Hore than 20 m 3 | - | N 11 |

A worker in this category of industry can earn on average $\mathrm{Rs} .300 /=$ per month considering 20 days working per month.

The product5's including various items are localiy consumed and selling prices are comparatively lower. sam timber i's usually purchased from mill owners otherwise some people purchase logs and saw them according to requirement.

## Bamboo. Mat Industry:

Making ${ }_{\text {of }}$ bamboo mat $i_{s}$ a household industry and no detall information $1 s$ available. Muli bamboo(Halocana bambusoldeg $1 s$ largily used in bamboo mat industry. One organized unft of this category 1s located at Karimganj styled as"Muli Bash Hasta Silpa Samabaya Samity Ltd! The relevant infomation of that co-operative unit is furnished below -


Cane industrfes in undivided Cachar district is also disorganized like furniture and fixture and baboo mat industries. Cane is not sufficientiy available from local resources and as such large quantities are irmported from adjoining fotates of Mizoram and Manipur. Sale of cane through broker is the common aystem. Major cane industries are located in placerlike Badarpur, silchar, 4 .

Cane incustries produce items like sofa set. Table and Chair. Usually $60 \%$ of the requirement of cane is imported from Manipur and $40 \%$ from Mizoram. In respect of typlal cane industrial establishment the following information is fumished :-

# Strength of establishment: 3 NOG. (1ncituding owner) Number of. working days per years 200-300 days Income of a labourer (skilked) : is. 15-18/- 

At silchar 35 number of ahope operate. The requirement of cane $1=$ lergely met by import from Manipur ( $60 \%$ ) and Mizoram (40\%). Nearly 25,000 number of canes (30.480m. long and 1.9 om . dia) are conenmed for making cane furnitures and anle of ome quantity of cane to outside by each unit is also notioed. There le export of cene to other places. Averege export of cane to various piaces ie as under :-

Calcutta: 20\% Madres : 25\%
DeIhi 1 30\% Andhre Predeeh: 15\%
Balance 10\% is coneumed in local market. Besides these, there are eome brokere in Silchar who do not have any furmiture making aotivity but to eupply. cenes to the regular induetrial unite and eleo participating in export outelde Aegen. Each piece of cene is ubually 4m. long and price ranges from 200 to 300/- per pc. Foreat Department in Silchar and Karimgenj realiees royalty 0.04 p. per 10m.

## Minor foreat produce collection:

Fivergreen and aemi-evergreen forests of Cachar district [2 yield a variety of minor forest produce. Collection of the minor forest produce from foreate hee impact in rural life for employment on Beasonal babis. Govt. of Aesem in Foreat Department ettach major importance in collection of minor forest produoe when ell other foreatry operations in coupes have been olosed virtuelly. Chief minor forest produces ere:

Bemboo, Chalmugre, Cane, Tejpetta, Nesenwer flower, Asar oll, Chattapata, Gandhi roote, Rema, Hartaki, Erra, Thatch, Kıtapata, Stonee, Bouizders, aande.

Collection of the minor forest produce is orgenized inarmally by the contreotor in the forests. Send and boulders:r are aleo collected by Government Depertmenta and Armed and other Paramilitary forcēe by their departmental labourers. colleotion or the minor foreet pröuoes, by ooperative agencies wes not noticed. So. there are waderemployment among rural folk(men/women) in this matter of colleotion of minor foreat produce.

A lerge portion of the minor foreat produce eo oollected is tranoported out of the district end state. No data for actual oolloction of produces is aveilable pe because areas ere leaped and quantity of $r$ encesal is not etipuleted in Balea. 1.912.

## Plywood induatries:

Plywood induetries in undivided Gacher dietrict is wader developed although a variety of plywood epecies are available in tho everereen and oemi-evergreen foreate. Scope of expanding this induetry is enough becaure of presence of lerfe number of Tea Gardens in the area. Study of plywood indurtries indicate that the unita are under-utilized end lof inteke fer very poor. Surma valley Sew Milla Privete Itd., of gilehar and Surma Match \& Ind. (Pvt.)Ita. of $\mathrm{K}_{\mathrm{ar}}$ 2mganj produce plywood of both I.S.I. end non-IgI type. Tea-cheete are menufactured and sold to the tea Gardens. Various typen of timber ueed in these mille exe as followe:


Theee plywood mille are not equipped with mongh modern mechinaries. There are only aome old machineriea to run the mills. Ihese mills are rum by two categories of etaif namely etaff on monthly anlary and workers on daily wage basib. average rate for akilled worker on daily wage is Rs.10/- per day and that for unskilled worker is k. 7.50 Monthly ealary of etaff renges from 300.00 to 450.00 per month depending on the nature of work.

Capacitiee of the milla ere as follows
Surma valley eaw mille pxivate Lta. -2628mj/yr. The SuFina Match \& Induetriee(Pvt.) Ita. -2520 m $3 / y r$. Purchaee of timber ie ubually axranged through braker and ellotment ia received from Govermment for rannine theee industriee. Iroduotion of plyood
in these two mills may be $175000 \mathrm{~m}^{3}$ provided $90 \%$ or more of the capecity ia utiliaed. Since tuo mills are undox utilized, the production is far too less and unite ere eick in neture.

Wood weste日 in theen mille are utilized for running boiler or sold ag fuel. Chiefly the raw materiala are brought from Mizoram ena Manipur as becaube foreatry operatione in Cechar ie almoet nil. Depertmental operation in selected area are not enough to meet various locel demende for eupply of loge of various epeciea.

## Firewood retail Bele:

Virtually alone firowood, ale used to get energy for domeetio purpoee. Sale of firewood in places like Karimgenj, Hailakandi, Siloher end other areas can be noticed. Firewood is either obtained from local eour oen or brought from Manipur and Mizoram. Verious miecelleneous epectee are used as firewood. Firewood retail sale does not provide eny employment excepting the owner end earning thereof ie also not highiy lucrative. In Karimgenj there ere neerly 100 firewood reteil shope. Similar number of retail ehops mef be found in Silchar. Theee unite are generelly small and elmost all of them handle nearly 8-10m3 per year. Only owner engages himself to aplit the firewood and salethem. Earainc from these unite ie too low. The owner purcheees firewood from varioue sources at the rate of ks.15-20 per quintal and then firewood ia sold at $\mathrm{m}_{\mathrm{g}}$.35-40/- per quintal with only input of eelf lebour of the owner which doubled fe price. So employment of $l_{\text {erger }}$ number of worlsers and hendling more fifewood may enaure more earning. Uavelly 300 deye per y eer are aveiled for thia kind of trade. Unakilled labourer engeged is eplitting firewood can ann ks.10/- per day. Unitewith handilne capacity more then 50 m p per year is too leas in mumber and most of the unite handie $E-15 \mathrm{~m} 3$ per year.

## Bemboo retedl anle:

 is notioed in selected pleces. The objective of the trade la to export of bamboo. Gonerally thia catesory of traders are noticed in Baderpur Ghat. This oetegory of tradere do export of bemboo of nearly 10,000 numbera in a year.

One bamboo coste on average B． 0.70 at Badarpur．Export of bamboo from Baderpur is arranged by raile etenmer and truck depending on the dentinetion．Gommonly wegone and rucke are eveiled for thie purpoee．Purchase of bemboo ie made by the tredere from the Lahalders only．A large quantity of bamboo is exported to Caloutte by wason．Ueually a trader gaine的．500－600／－pex thourand by eale．Nearly 18，96，000 poe．of bemboo ere exported outeide the dietricte．Some quantitiea are exported to Gujrat besides Calcutte．

Bemboo oonaumed locelly ie usüally bold at Bs．850－1000／－ per thoueand through retail outlets．Chiefly Fuli Bamboo （Malocanne bembueoide日）1a used for meking hute．Some quantity is coneumed in houeehold induetry for making Umbrella handles．

## Teentinduetry：

In Cachar district（undivided）there ere 115 Tea Gerdens ea per the 19：1－82 Statietion of Tea Board．These Tea Gerdens are grouped under Tea Aseoolation of India and Surme valley Branch，Indian Tea Ae日ooletion．The日e Tea Gerdens are important in locel economy because the induetry provides large mumber of akilled and unkixiled employmient in rural aroes．
1.10 .1

## Tea cultiyation：

Tea production in Cecher dates back long time before Indeperdence．Gradual ribe in derand of tea in locel and outaide country heve resulted in the expeneion of tea gerdene．＇Currently tea industries occupy $32,171 \mathrm{ha}$（area under tea multivation）in Silcher，Karimgenj and Hailahendi erees．Nearly $30 \%$ of the total population in the distriot is dependent on this induetry． Various categories of workere are employed in tea garden which includes malea，femele and minoxe．On an average nearly 45，000 to 59，000 woxkers are engaged in the induetry of which 30\％are non－reaident workers．Wage rate of non－reeident workexs ere：

| Made | $: 6.28$ per day |
| ---: | :--- |
| Female | $: 6.18$ per day |
| Minar | $: 3.20$ per day |

:27:

Tea gardens have shown arise in tea production. Tea productions are as follown during recent years:

| Year | Production( $\mathrm{rag}_{5}$ ) | Decrease(kg.) |
| :---: | :---: | :---: |
| 1980 | 3,21,70,000 | - |
| 1981 | 2,99,50,000 | 2,220,000 |
| 1982 | 2,90,82,000 | 8,68,000 |
| 1983(upto | Sept)2,04,50,000 | 8,6,52,000 |

1.10 .2

## Yegatation in tea gardens:

Tea gardens cover many areas with tree日 of forestry apecies. These lande were not properly managed to get a eustained supply of fore日t preources like timber and fuelwood. as a reault of this many areas under the control of tea gardene are now denuded with little or no vegetation. These $l_{a n d}$ under tea gerdens aren not utilized for tea cultivation and were brought under Burplus land oeiling. The extent of euch eurplue land mey be upto 40,000 ha. This land will be available lat Silohar and Karimganj and may be utilized for raising plantations of forestry trees. Many of tea gerdens are self aufficient for inupply of their timber and fuelvood requiremente in their gardens. Use of coal in bome toa gerdens ie common. Coal consumption in this industry is esfollows:


Consumption of coal by the garden is not exadually increaeing. Dependency on fuelwood ${ }_{A}^{\text {dnd }}$
eource of supfly to the eardens is in the following pattern:

Fuelwood ia extracted from garden foreste and aleo by lopping of shed trees. Timber is largely obtained from gerden foreate and minor collection. from market mey be noticed.

### 1.10.3 Expansion of Industry:

Tea industry is likely to expand during 7th Five Year Plan when requirement of fuelwood and timber will increase. To meet the additional requirement of fuelwood in timber, Tea gardens might have to exploit their resources in view of increased price of fuelwood and timber. Immediate problem of timber and fuelwood suppiy may not be surfaced.but in the long run sustenance on own resources by the gardens may not be posstble. So, tea gardens need be encouraged to restore their own areas with fast growing species chiefly to meet the requirement of fuelwood for supply to their working people.

### 1.11 Stratification:

Forest area in Cachar district 1 s 2396.20 km 2 which can be stratified into two strata viz. miscelianeous and bamboo strata. The miscellaneous strata is larger in area and is characterised by the presence of various species like Cynomerla polyandra, Dysoxylon blnecterlferium and syzygium cuminii etc. Most of the trees in the strata are below 30cm. in diameter. Presence of bamboo in this strata is noticeable which includes both clumping and non-clumpling varieties. The proportion of bamboo current growth is higher compared to 1 or 2 years old or more than 2 years old growth. Clump forming bamboo actually constitutes the bulk of the bamboo stock in the strata.

Bamboo strata contains both bamboo and miscel laneous trees. Among the miscellaneous trees Macaranga specles are found in larger proportion. In this case, also most of the trees belong to lower diameter class(below 30cm.). Bamboo stock In this strata contalns largely clump forming species. The proportion of current bamboo growth is nearly 30\%. The ratio of clumping and non-clumplng bamboo in this strata is nearly di.4.

Besides the above two strata, thore are certaln areas which include tea garden, agricultural land, barren land and village sites within the project area of undivided Cachar district. Vil lage sites, agricultural land etc. inclicate thrust of population on forest land. Barren land indicates degradation of forest which may be on account of shifting cultivation ond recklerss cutting of trees.

This category is actually 36912.70 ha. and represents $15.40 \%$ of the total area under forest as mentioned earlier.

## Legal stacus:

As per the records avallable in the stace forest Department of Assam, the forest areas under the control of Forest Department are mostly reserve forests. Another c-ategory of land which are not under the control of state Forest Dept. have some tree groyth. These lands are adnundstered by the Deputy Commissioner through the agency of Land Revenue Department These lands with miscellaneous tree growthats usually krown as U.S.F. wherein people enjoy some rights and extract forest produces on obtaining pernission of saring from the divisional Forest officers at silchar and Karimganj.

## Demarcation and forest settlement:

Forescs under the control of Divisional Forest officers at silchar and Karimganj were demarcated on the ground by boundary pillars, compartment lines and blook lines. There is no evidence that the forest boundaries have been demarcated in recent past and the length of boundary is not known.
within the forest areas forest villages were set up in the past to maintain local labour foree for creation of plantation, making forest roads, extraction of timber and fuelwood. These forest villages are distributed all over the forest areas. Forest villagers are settled under certain terms and conditions for various forestry works on the basis of payment of wages. There are altogether 135 forest viliages, as per the information availab le in the working plan for the period 1957-58 to 1971-72. Forest villagers enjoy certain rights and concessions in respect of forest produce.

## Righta and privilcges"

General public in the district do not enjoy any right or privilege in the affairs of forest management. Some concesaion. are allowed in respect of the forest dwellers in forest villager. supply of tirewood, poles, thatch etc. are allowed at free of cost. In terms of Assam Settlement $\mathfrak{F}$ of ung certaln kinds of rights are developed on the trees by the lessee. But this $1 s$ belng safe guarded under section 32 A of Assam Forest Regulation which stipulates that certain kinds of trees like Chalmugra, Rata, Slsoo. Ping, Anani etc. are not allowed for removal. Provision under Assam Settlement Rule is exercised'by local Deputy Comofssioner and as a result of which many lands with tree growth have been degraded. particularly where repeated cutting has been allowed.

Trees like Chalmugra, Rata, Slsoo. Ping, Pandala, Khokan etc. are considered to be reserve trees and cannot be felled in the leased land a nd permits from these areas are allowed when the Forest Department does not come into picture. Permission is solicited by the local villagers from Forest Department for removal of trees from stump site or sawing of the timber. permission is solicited from the Divisional Forest Officer whose control is very much remote. There are chances whereb $y$ unauthorized felling of trees and lts conversion by sawing which cannot be ruled out.

### 1.11.4 Present management:

At present the forest land under the Forest Department in Cachar distric,t is not managed under any working pian prescription. Past method of leasing out of tin ber coupes as per the prescription of working plan(1957-58 to 1977-72) may not be advocated as a proper measure because of extension of lease period will endanger the removal of better growth from the forest. Further extension of lease may encourage a lessee to operate the timber bearing area evendring the growing season. Under such situation timber harvesting has been reduced to a large extent. So, timber operation is allowed on a smaller scale through Contractox"s agency. Departmental timber operation in both Cachar and Karimganj Forest pivisions is carried out. There are scope for increased departmental timber operation and the same has not gained any m omentum till the timber resources of the area surveyed and assessed. Departmental operation really provide chances in the bettement of rural economy and improve situation of rural employment. Besides working fof forest coupes for timber, bamboo bearing areas are worked on lease basis for extraction of bamboo. Earlier in the borking Plan 1957-58 to 1971-72 leasing out of bamboo coupes was prescribed. The same tradition of leasing out of bamboo coupes(localiy known as bamboo mahal) is continu1ng. In this process of management extension of time for working 1 g granted to the lessee as a result of which chances of over cutting particularly the current growth remains. However. unless the working plan is revised and the banboo resources $1 s$ c orrectly assessed no suitable prescription can be advocated by the state Forest Department.

Various kinds of major and minor forest produces are available in the reserve forests and other tree bearing areas of Cachar district. It will be interesting to note that at the moment only minor forest produces are worked largely by the State Forest Department. Possibility of working in Nareas with tree growth is remote unless the working plans for both the forest divisions are revised and implemented.

Considering the availability of varlous forest resources from forest, it may be pointed out that minor forest produces like sand and stone are removed now at a very large scale from the various river beds and queries. This kind of operation if continues as such ecofogical imbalance cannot be ruled out. Excess removal of stones and sands from river beds may likely change the course of the river which may ultimately cause flood. Regarding removal of sand it may be pointed out that excavation of sand from queries marginal to forest land will deteriorate the ecological condition in the forest area and in this process chances of successful afforestation will be destroyed. Therefore, it is necessary to control the removal of these two produces from both Cachar and Silchar forest Divisions.

Regarding timber operation, it may be polnted out that sort of regulations has to be developed to stop the working of the forest with more than $80 \%$ pole crop. Repeated working excess removal, destruction of better tree growth in this part of the forest caused serious damage to the forest area and avaißlability of bamboo and timber has been reduced. Removal of various kinds of minor forest produces like Chalmugra, Agar, Rema etc. are done without any scheme of working and there is no evaluation of these resources. Working of various agencies within the reserve forest areas can be seen in respect of the above. As the manpower potential in these two forest alvisions are not enough, it will be difficult to control exercise on the removal of such forest produces and chances of unregulated removal by stealthy manner may destroy the production potential of these forest produces.

The infrast ucture in the afstrict is not developed particularly in respect of power and communication. Major items of infrastructure are furnished in subsequent paragraphs.

### 1.13.1 Achinistrative:units:

Forest managenent in cachar district is controlled by two Divisional forest officers. These two D.F.Os actually function from their Headquarters at Silchar and Karlmganj. Executive staff of various categories assist the D.F.O. for managene nt, of forest.

Deputy Conmissioner at Silchar and Karimganj oversee the forest.management from adninistrative angle. Unclassed state Forests are directly controlled by them.

Economy of Cachar is based on agriculture and people primarily devote themselves in cultivation. Agricuitural labourers are avaliable but not in rainy season. The district is situated along the border of Bangladesh and as result migratory labourers are available from time to time. Population pressure on the local economy is very high, and on account of this wage rate of the ordinary labourer is hagher than many other places in the state. Availability of skilled labourer is not enough. Therefore, opening of industries in any sector should have a programme of importing skilled labourer in the area.

### 1.13.2 Communcation facilities:

Road commundation in the district is yet to develop. National High ways servethe maln connecting link with the adjoining states of Meghalaya and Tripura. Prevailing road in the district are Kuchha type which actually oo not serve the communication purpose in the rainy season. Inner areas remain disconnection with the district and sub-divisional Headquerters during rainy season. As the district is agro based in economy opening of better new roads will not cormensurate with productivity. Railway links are avallable in a few places. Metre gauge railway line enters Into Cachar th rough Lumbding Rly.Junction. Maj of railway links are from Badarpur. Rly.Junction. Rallway link actually serve the central portion of the district and to some extent in the northern part.

Currently a schene is going to connect silchar with Bhairavi in Mizoram and Jirimukh in Manipur. If these two railway connections are developed not only Manipur and Mizoram will be benefited but trade and commerce activities in silchar, Badarpur, Hailakandi and Lala will be increased to an appreciable extent.

A third line of communication in the district are the waterways. There are number of rivers in the area which connect several rural and urban areas. This mode of communcation $1 s$ availed by the rural population to an appreciable extent. Country-made boars, bamboo and timber rafts are the common mode of transport used by the r ural people for the Journeys from one place to another. However, this mode of journey becomes really difficult during the rainy season when the river move very swiftly.

Power development in the district is very poor. only a fer places are provided with tils facilities. Lack of power supply is one of the impediment in the matter of industrial development. Tea gardens usually get power from thelr own resources. This kind of captive power generation is not possible for small undts of industries which do not earn so much of profit to sustain the cost of generation of power.

Lack of infrastructure really retarding economic development in the area. Large water resources and forest resources can provide adequate base for rural industrial development. But 1n both the sectors of power and forestry organised and systematic development are yet to be achieved.

## CHAPTEE.II

## INVFSTIGATION AND NETHODOLOGY

## 2. 1 Ob fertres *

The principal objectives of the present inventory are appeaded below :-
i) to estimate the total growing etock of the area within en exror margin of $\pm 10 \%$ et $95 \%$ probebility level.
ii) to e日timate the totel dry weight of growing etock of bamboo in the project araa,
iii) to determine the compoaition of the forest and dietribution of $\quad$ arious epecies by eize claeees and voluthe thereof,
iv) to aeseas the wood consumption for domestic and induetrial purpose,
v) to provide suitable data baee in strategic planning for forest development.

### 2.2 Fhotointexpretetion and mepping:

The entire project area is covered by aerial photointerpretetion. Ground inventory was baedi on the Survey Of India topographical sheets. The following topographical eheeta in 1:50,000 ecale were ueed :-
$83 \mathrm{C} / 12,83 \mathrm{D} / 4,83 \mathrm{D} / 5,83 \mathrm{D} / 6,83 \mathrm{D} / 7, \mathrm{~B}, \mathrm{D} / \mathrm{B}, \mathrm{B}, \mathrm{D} / 9$, $83 \mathrm{D} / 10,83 \mathrm{D} / 11,83 \mathrm{D} / 12,83 \mathrm{D} / 13,83 \mathrm{D} / 14,83 \mathrm{D} / 15,83 \mathrm{D} / 16$, $83 \mathrm{G} / 4, \quad 83 \mathrm{H} / 1, \quad 83 \mathrm{H} / 2, \quad 83 \mathrm{H} / 3$.

### 2.3 Inventom deaign:

The stendard design for ground inventory worle prepared by Foreat Survey of India has been eaopted.
2.4 Sampling deeign:

Each topographical mapeheete of acale 1:50,000 relating to Cachar dietriot wes divided tnto gride of $2^{1 / 22^{\prime}} x 2^{\prime \prime}$ whioh formed a unit. The plot centree of two gamplemeplote vere selected in each grid which were located in the field. A plot of. 1 he. wer laid out axound the plot centre and inventory of thia eampla plot wes done.

The plot oentree of the two andple pointa fin ech crid vere mele oted lй the fóliowiner maners:

Two rendon numberse were aele oted from the random mumber table whial forx the beala of $I$ and $I$ coordinaten of the plot oentre of one mgaple plotg with the Ietitude ee I axis end
 Cria ar the origin. The mample plot was ploted in tho crid. The loontion of the seaond sample plot was Pound by folnige the firet plot emente vith the erid aentre and extendine it to an equal ditetanoe in the oppoeite direotion. The point at the end will be the plot centre of the seoond Eanple plot.

## 

Field dete were oolleoted by Creve; enom arev ocopieted of one Jr. Teabnicel ambietant, one Dy gatacer and a Pielamen. Fwo or three Labourexe were lept etteohed vith the cret teanfor outting junglea. laying out plota and blanag of treer eto.

### 2.5.1 Fiold instmotion

The plot onntre of each manple plot is loceted in the fiela with the help of a reforence point and a plot of ihat in Laid out around it. Aocorilins to the snetruction oontained in the manual, the dete were colleoted in the relevant forms. Detatled ingtiruotions on the prooedure of field vork and tililag the Fariong forms acording to. the coxreat codeng are givien In tho sield manual. Rach crew was allotted pith mamber of cride which ocatainga tho maber of mampleplote to be eurresed by then mocoxdine to the mbore projedure.

Yer colicotion of faformerion the follorige forme men


1) plot approneh forn,
2) plot deemeption Porm.
3) plot enumeration form,

1t) 'sanple tree forin.
F) Enerbend exruba dete Iorn,
*i) bemboo enutaration forize.
: 36
CHAPTER: III
Data Analysis

### 3.1 General t

A veeries of data processing, operations involved for diem inating various information about the condition and extent of forests in Geber district. These included three major types of data processing, namely manual processing, processing on unit record machine and processing on electronic computer.

### 3.2 Manual processing 1

It involves the following stope:-
i) documentation of the field forme,
ii) coding the information in the field forme which has not already been incorporated,
iii) manual choking for validity of codes used in various column of information and
iv) reconctlation of diacrepanciea, if ens, In ooneultation with crew leaders.
3.3 Processing on unit record machining:

Following steps are carried out on unit record machine:-
i) puncining the information on ceria,
ii) Verification of punched cerde,
iii) sorting and collating the cards for proper input to, computer and
iv) lifting of punched data cards.

### 3.4 Processing on electronic computer:

The following operations are carried out on electronic
computer 1 m

1) loading of the data on magnetio dial pack/tape日,
ii) consistency checking of the data,
iii) oorreotion of the data,
iv) calculation of tree and plot volume.
v) preparation of standard stock tables and
vi) preparation of growing etock tables for different types of strata.

Suitable computer programme are developed for proce日eins the aforesaid items of work on electronic computer.

### 3.4.1 Galculation of area:

The area e日timate is based on the figure of the Forest Department and this formed the bagia of calculation of growing atock of the area.

Accordingly the area falling undor different etratum is an follows:

| Stratum | Areanha in |
| :--- | ---: |
| Mincollanoour | 168296.89 |
| Bamboo | $344,10.15$ |
|  | 202707.04 |

The erea of 36912.70 ha. could not be claseified in any atrata as it falla againgt the following haade:

Tree sarden: 8758.95
Agriculturel $l_{\text {and18143.53 }}$
Village 日ight 5005.11
Barren land 5005.11
36912.79
3.5 Yolume etudies:

As local volum tables for moet of the epeciea of the projeot area was available from State Foreat Department, no volume equation was developed for estimeting the volume of growing atock.

| Name of Spedes with Code No. | Digmeter clepsee in cm. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 | $60-69$ | 70-79 | 80-89 | 90-99 | $100+$ |
| Anthocephalus indica(065) | 0.050 | 0.100 | 0.283 | 1.246 | 1.756 | 2.039 | 2.407 | 2.945 | - | - |
| Tetrameles nudiflora(688) | 0.100 | 0.300 | 0.500 | 0.700 | 0.850 | 1.699 | 2.095 | 2.464 | 3.228 | $4 \cdot 134$ |
| Syzygium cominit (665) | 0.200 | 0.500 | 0.700 | 0.878 | 1.104 | 1.841 | 1.954 | 2.435 | 2.662 | 2.775 |
| Saplum baccetum (620) | 0.100 | 0.200 | 0.538 | 0.708 | 1.104 | 1.841 | 1.954 | 2.435 | 2.662 | 2.775 |
| Meeue ferrep (460) | 0.200 | 0.300 | 0.400 | 0.850 | 1.048 | 1.303 | 1.784 | 2.322 | - | . 77 |
| Duabanga nonneratiodes(251) | 0.300 | 0.500 | 0.793 | 0.906 | 1.529 | 1.642 | 1.954 | 2.492 | 2.747 | 3.256 |
| Cynometra polvandra (218) | 0.100 | 0.300 | 0.510 | 0.551 | 0.934 | 1.388 | 1.529 | 1.699 | 1.727 | - |

[^0]
### 3.5.1 Yolume of trees enumerated:

With the help of the local volume table of the state Foreat Department and the diameter of enumerated tree日, volume of each tree was computed.
3.5.2 Plot volume:

Volume of all treea in a plot were added to obtain the plot volume.
3.6 Tree donbity Btudy:

The treee enumerated in plote were eeperetely estimated for both the etrata i.e. miscellaneous and bemboo.

### 3.6.1 Mis cellaneous etratum:

The number of etere/ha. in miecellgneoua etratum ie 197.446. The distribution of speciee by diameter is ehown in table No. 1.1 A cloes study of the table clearly showe thet unidentified epeciea in the atretum fe moet dominant and is about $27 \%$ of the total etems.

About the most frequent epecies mentionct moy be mede of Cynometra polvandra(6.5\%) followed by Dysoxylon bineteriforum(5\%) and Syavelum cuminii $(4.2 \%$ )

Among the other epecies the following are piedominant/f epecien:

Percentree( $\%$ )
Pymue pabhin
2.24

Macaranga peltata
2.07

Callicarpe arborea
2.02

Celophyllum Bolyenthum
3.33

Regarding the diatribution of atems, ecoordity to diameter oleesea, it is obeerved thet about $96 \%$ of the total atems are below 50 cm . dia. The percentace of eteme below 30 cm . dia. ia about $80 \%$. Thus it may be eafely concluded that although the density of the atratum $1 s$ quite high, the trees mostly belong to lower diemeter cleases.

### 3.6.2 Bamboo Btratum:

The distribution of epecien by diemeter cleaees in this etratum is given in table No. 1.2

Thenumber of steme per hectare in the stratum is 140.350. Thue it is clear that the deneity in the stretum ie poor than miscellaneous etratum. It is observed that the percentage of unidentified trees in the etratum is also very high and in about 31.6呂 of the total eteme.

About the dominant epecies occurring in the etratum, it is eeen that Maceranga aurichleta is not frequent (7\%) followed by


Regarding the diatribution of the epecies by diameter chasees, it is eeen thet $96.2 \%$ of the total ateme belong to diemeter claes below 50 cm . Percentege of etems below $30 \mathrm{~cm} . \mathrm{dia}$. is ebout $84 \%$.

Among the other epeciea, the following ere importent epecies:

|  | Percentage(\%) |
| :--- | :--- |
| Dypoxylon binectoriforum | 3.75 |
| Lagergtroemia Darviflor:a | 3.62 |

Thue it mey be eafely concluded that the treee in the etratum are mostly in younger stage and may not be expected to give eny dividend in immediate future.

### 3.7 Yolume studies:

Volume was aeparately eetimated for both the stratum i.o. miscellaneous end bamboo. Distribution of volume by bpeciea is eppended in tabla No. 2.1 and 2.2
3.7.1 Miscellaneoue otratum:


The volume ne expected is low eince most of the treee pertain to younger diameter clasis. The dominant apacies in the stretum are Cynomerea polyandra ( $8.02 \%$ ) followed by Syzyeium cuminii (6.6\%) Dyeoxylum binectoriforum (4; ) and Artocarpus cheplamha (3.7\%). For detail table No. 2.1 may be referred.
Contribution of predominant speciea：

## Per centerge（\％）

fegua fexrea 3.00

Colophylum polyanthum 2.70
Duabonea Eonneratiodes 2.11
AFbiazin 日仅eqie日 2.02
Teotona Exendia 2.01

Regerding the diatribution of volume by diameter cheag， it is observed thet about $48 \%$ of the volume belong to the dia． clase below 40 cm ．diameter．Volume contributed by the treen over 60 cm ．diemeter（matured trees）is about 17.6 of the total volume．

## 3．7．2 Bamboo Etrata：

The volume per hectare in the etratum ia only 30.539 m 3 （table No．2．2）

Ae expected，the concenraption of bamboo in the atratum being high，the volume per hectare in the etretum is low．The dominent volume contributing speciea in the stratum are Artocaxpue chapalagha（ $8.9 \%$ ），followed by Duabanger exerdifiloxe（4．6\％），Saplum bacostum（4．1\％）and netrameleg mudiflore（3．8\％）

Among the other epeciea：

| Cunometra polvendra | 5．20\％ |
| :---: | :---: |
| Dugbange eonnortioder | 4．56\％ |
| Stereoppermum chelonoide日 | 4．24\％ |
| Syzyfinum chainix | 3．62\％ |
| Dipterocarpur macrocarpus | $3.17 \%$ |
| Gmelina erborea | 3．01\％ |
| Terminelia gitrana | 2．43\％ |

Regarding the distribution of volume by diemeter olase， It is been that about $23.2 \%$ of the $\begin{aligned} & \text { bolume } b \text { elonge to diameter }\end{aligned}$ clebs（10－19cm．）．

Yolume belong 30 cm ．in about $34.5 \%$ ．
Volume belomeing to the matured diameter alaes（i．o．ebove 60 cm.$)$ 1e only $17 \%$ of the totel F olume．

### 3.8 Yolume by atrata:

The total volume of the growing atock for the area has beon seperately eatimated stratum wise both zian miscellaneoua and bamboo etrata and are included in table No. 4.1 and 4.2

The following gives an abstract of the volume distribution over the entire area ae covered in the present inventory;

| Stratum | Area in ha. | Volume per $(-3)$ | Total volume $(1,000 \quad m 3)$ |
| :---: | :---: | :---: | :---: |
| Miscellaneour | 168296.89 | 47.816 | 8047.266 |
| Bamboo | 34410.15 | 30.539 | 1050. 868 |
|  | 202707.04 | $44.883 \checkmark$ | 9098.134 |

### 3.9 Stenderd error:

Totel etenderd error for volume per hectare is 3.3344 However, etandard error for the eatimatea of volume per hectere for different stretum ie given below :-

| Stratuan | Volume/he.(in m3) | S.E. (\%) |
| :---: | :---: | :---: |
| M- coellaneous $^{\text {a }}$ | 47.816 | 3.1623 |
| Bemboo | 30.539 | 5.7972 |

3.10 Sampling desisn(Bemboo):

Bamboo clump enumeration was carried out in the entire plot by alump bize cleage日. Muli was enumerated only over $1 / 8 \mathrm{th}$ area of the plot(touching northern semi-diaeonel) counting will be done only in 9.0125 ha . area i.e. rorth weet quarant.

### 3.11 Bemboo date:

Bamboo deta was collected as detailed under para 1.1 In cese of current fears culme of both Muli and clum formers, the diameter claseification wes not done, as the growth of culme would not have been completed. Bambooe were enumareted according to the following diameter claseess

2 to under5om.
5 to 8cm.
8 to and over.

Apart from counting the bamboos under 3 dianeter clagae日, it wan neceasex'y to colleot the weleht hata alao to arrive at the green dry weight ratio. The manuel of instructions for field imventory is the main suidline.
3.12 Culma per hecteres

### 3.12.1 Mult Bemboo:

Total number of muli, culme were recorded in the northern helf of ench plot. These fieures provided obtimate of the total muli culme over the entire erea.

The deteiled enumerations of muli culme occurrine in the northern heif of $H, W$. querdant were done by ago (current eeasons, 1 -2 seasong and over 2 seasons) soundnese, apd diameter (2-5om.).5-8cm. and 8 cm . over) this deta provided the proportion of culme in different age clagees, Eoundiaese cleages and diemeter cheasea in both the miscellaneous stratum and ba.mboo etratum. The number of culme per hectare by afe and soundneas ere given 1n Table No. 5.0

### 3.12.2 Clump forming:

The total number of clumpe in each plot were anumerated alongwith tree cnumeration. Clumbere then clageified in detail by exe (current seapons, 1 to 2 seasong and over two seasons)and eoundness(green sound and deceyed) and diameter (2 to 5 eme., 5 to 8 cme., ecme and above). The number of culms/per hectare by age and foundnear are given in Table No. 5.0

### 3.13 Bemboo weight:

Green weight of bemboo culme in diameter clagses $2-5 \mathrm{~cm}$. 5-8cma. Ecme. and over war available from the follea culme. The Ereen weight of a culme was convorted toair dry weight by multiplying a factor 0.6


$$
: 44:
$$

The following weightages were given to the different conditions of the culm. for determining the weight of a culm:
Green sound 1.0

Green dameged 0.5
Dry nound 2.0
Dry dameged 1.0
Deceyed 0.0

The reeult of bamboo dx'y weight/he by ase and soundmese are given in table No. 6.0

## : 45: <br> CHAPTER: IV

RESUTTS OF INVENTORY

General:
The forest area under the control of state Forest Department of Assam in the undivided cachar district was surveyed. According to the data availab-le from fiela inventory, the forest area has been classifled as per the paragraph 3.4.1 into two strata namely Miscellaneous and Bamboo. Various data were collected in the field and the most pertinent items are presented in the subsequent paragraph to indicate the certain results of the present inventory which include the assessment of growing stock in the area.

## i) Miscel laneous stratum:

The total forest area under the control of the state Government is 239620 ha. out of which 163296 n9 ha.belong to the miscellaneous stratum. The miscellaneous stratum in Cachar valley consists of tree growth forests of vazying density. In parłgraph 1.8 it has been stated already that the tree growth in Cachar valley is mainly comprised of tropical evergreen and semi-evergreen types. The troplcal evergreen forests is malnly composed of species like Artocarpas chaplasha, Mancifera spr. Lophopetalum fimbriatum. Alseodophne owdenii, Callophyllum polyanthum, Canarium resmiferum etc. These are all evergreen types of species, which are largely present in Cachar valley. The semi-evergreen type of species are Gmelina arborea, Adina cordifolia, Amoora wallichii. Albizzia procera etc. The local variation in these type of tree growth has also been discussed in paragraph l.3.3 oc-currence of these species are further presented in terms of actual data collected from the field in table No. 1.!. Cedrella febrifuga. Eugenia fruticosa, Chukrassia tabularis alongwith Anthocephalus cadamba, Duabanga sonnerotioides, Cynometra polyandra are also found.

The miscellaneous stratum in the Cachar valley can be classified into i)dense tree forests ii)moderately dense tree forests and ii1) open tree forests. The occurrence of dense tree forests in Cachar valley is very rare and the following grids and plots represent the location of dense tree forests:-

| Topasheet No. | $\begin{aligned} & \text { Grid/No. } \\ & \text { Plot } \end{aligned}$ | Volume/hectare | Ster/hectare |
| :---: | :---: | :---: | :---: |
| $83 \mathrm{D} / 8$ | 105/1 | 17.996 | 53 |
| $83 \mathrm{D} / 7$ | 204/2 | 8.318 | 44 |
| $83 \mathrm{D} / 15$ | 615/1 | 13.964 | 54 |
| 83 Dy 15 | 615/2 | 7.532 | 58 |
| $83 \mathrm{D} / 15$ | $616 / 1$ | 12.645 | 60 |
| $83 \mathrm{D} / 15$ | 616/2 | 13.156 | 61 |
| 83 D 11 | 710/1 | 16.852 | 59 |
| $83 \mathrm{D} / 15$ | 715/1 | 6.539 | 62 |
| $83 \mathrm{D} / 15$ | 715/2 | 9.413 | 45 |
| $83 \mathrm{D} / 15$ | 716/1 | 6.037 | 40 |
| $83 \mathrm{D} / 15$ | 716/2 | 18.392 | 61 |
| $83 \mathrm{D} / 6$ | 802/2 | 21.427 | 29 |
| $83 \mathrm{D} / 10$ | 810/2 | 12.682 | 83 |
| $83 \mathrm{H} / 2$ | 1019/1 | 17.242 | 46 |
| $834 / 2$ | 1018/2 | 15.705 | 49 |
| $83 \mathrm{H} / 2$ | 1118/1 | 27.316 | 59 |
| $83 \mathrm{H} / 2$ | 1118/2 | 11.224 | 62 |
| $33 \mathrm{H} / 1$ | 1522/1 | 13.572 | 48 |
| $83-12$ | 2107/2 | 3.921 | 52 |
| $83 \mathrm{c} / 12$ | 2103/1 | 11.513 | 41 |
| $83 \mathrm{c} / 12$ | 2109/1 | 8.156 | 36 |
| $83 \mathrm{c} / 12$ | 2110/2 | 4.649 | 28 |
| $33 \mathrm{c} / 12$ | 2111/1 | 7.171 | 42 |
| $33 \mathrm{C} / 12$ | 2112/2 | 18.763 | 45 |
| $83 \mathrm{c} / 12$ | 2206/1 - | 14.198 | 35 |
| B 3 c/12 | 2209/1 | 19.983 | 45 |
| $83 \mathrm{c} / 12$ | '2211/1 | 7.258 | 53 |
| $83 \mathrm{c} / 12$ | 2211/2 | 12.205 | 43 |

## Contents

The above tabulation snowing the distribution of sterf/ha. and volume/ba. 1s indicative of the following inferences: -
1). Species li'ke syzugium cuminit Dysoxulum hinnertariferum, Cynometra polyanara, Dillenia Dentanyna, Mosua ferra, Barringtonia spp., KydiA calycina, Lophooetalum fimbriarur are trailing betind in the competition. Most of these are in regeneration stage and some of than are not even found in pole stage $1 . e$. $a b$ ove 30 cm . in diameter class. It 1 s 1 nteresting that Cynometra polyandra is the commonest of all the species listed above in major grids and 」lots where the growth of this species is found to be even in regeneration stage.

The occurrence of dense tree forests as represented in the above list of grids and plots is not found in a continuous patch but these occur in, pepatches. Difficult terrain which does not permit harvesting of timber and other produc es on various physio al barriers in the area is the main factor which has retained the present character of the vegetation.
2) Moderately dense tree forests in cachar valley is comperatively larger in area and it is also located -in various terrains where the accessibility even today is not easy for extraction ${ }_{\text {nf }}$ timber and other forest produces. The list of following grids and plots do indicate the locations of moderately dense tree forests alongwith other relevant infonnation:-

| Mapsheet No. Gria/Plot No. Volune/ha. No. of stem/ha. |  |  |  |
| :---: | :---: | :---: | :---: |
| $\frac{=}{83}=18$ | $4 / 1$ | $20.188$ | 33 |
| $83 \mathrm{D} / 8$ | 4/2 | 10.513 | 26 |
| $83 \mathrm{D} / 12$ | 106/1 | 3.911 | 25 |
| $83 \quad \mathrm{D} / 7$ | 203/1 | 1.133 | 17 |
| $83 \quad \mathrm{D} 7$ | 205/1 | 1.601 | 5 |
| 83 D | 208/1 | 6.344 | 12 |
| $83 \mathrm{D} / 7$ | $300 / 1$ | 8.667 | 24 |
| $83 \mathrm{D} / 7$ | $301 / 2$ | 6.493 | 7 |
| $83 \mathrm{D} / 7$ | 302/2 | 9.098 | 38 |

:48:

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| $83 \mathrm{D} / 11$ | 307/2 | 9.427 | 35 |
| $83 \mathrm{D} / 7$ | 401/2 | 9.396 | 33 |
| $83 \mathrm{D} / 7$ | 402/1 | 18.505 | 39 |
| $83 \mathrm{D} / 11$ | 409/2 | 9.966 | 24 |
| $83 \mathrm{D} / 7$ | 502/2 | 18.326 | 41 |
| $83 \mathrm{D} / 11$ | 509/1 | 9.303 | 50 |
| $83 \mathrm{D} / 15$ | 514/2. | 8.393 | 41 |
| $83 \mathrm{D} / 7$ | 600/1 | 6.745 | 26 |
| $83 \mathrm{D} / 7$ | 602/2 | 9.498 | 50 |
| $83 \mathrm{D} / 11$ | 609/1 | 9.814 | 43 |
| $83 \mathrm{D} / 15$ | $613 / 1$ | 13.144 | 53 |
| B3 D/15 | 613/2 | 2.966 | 38 |
| $83 . \mathrm{D} / 15$ | 614/1 | 11.245 | 52 |
| $83 \mathrm{D} / 15$ | 614/2 | 10.452 | 59 |
| $83 \mathrm{~L} / 1$ | 706/1 | 5.651 | 5 |
| 93 D/11 | 708/1 | 8.930 | 29 |
| $83 \mathrm{D} / 11$ | 709/1 | 4.062 | 29 |
| $83 \mathrm{D} / 11$ | 709/2 | 11.724 | 30 |
| $83 \mathrm{H} / 2$ | 101/2 | 7.580 | 28 |
| $83 \mathrm{D} / 10$ | 1110/2 | 4.644 | 63 |
| $83 \mathrm{D} / 2$ | 1219/1 | 19.424 | 69 |
| $83 \mathrm{D} / 2$ | 1119/2 | 11.033 | 45 |
| 83 D/6 | 1200/1 | 6.428 | 20 |
| 83 [1/6 | 1200/2 | 11.732 | 38 |
| $834 / 2$ | 1219/1 | 14.896 | 30 |
| $83 \mathrm{H} / 2$ | 1219/2 | 17.059 | 30 |
| $83 \mathrm{D} / \mathrm{G}$ | 1301/1 | 15.274 | 25 |
| $83 \Downarrow 2$ | 1319/1 | 6.245 | 24 |
| $83 \mathrm{H} / 1$ | 1420/1 | 3.279 | 23 |
| $83 \mathrm{D} / 10$ | 910/1 | 1.033 | 5 |
| $83 \mathrm{D} / 10$ | 910/2 | 4.312 | 37 |
| $83 \mathrm{D} / 14$ | 913/1 | 11.037 | 28 |
| 83 y 2 | 918/1 | 11.169 | 36 |
| 33 V 2 | 919/1 | 11.370 | 47 |
| 8341 | 1721/2 | 5.252 | 26 |
| $83 \mathrm{H} / 1$ | 1722/2 | 6.451 | 35 |
| $83 \mathrm{H} / 1$ | $1321 / 1$ | 2.743 | 15 |
| 83 サ1 | 1823/2 | 17.368 | 42 |
| 83 D/9 | 1909/2 | 13.090 | 92 |
| 83 D/9 | 1911/1 | 12.756 | 6.3 |
| $83 \mathrm{D} / 13$ | 1914/1 | 3.628 | 11 |


| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 83 D/13 | 1915/2 | 3.195 | 19 |
| $83 \mathrm{D} / 13$ | 1916/2 | 1.704 | 10 |
| 83 日/1 | 1918/1 | 13.631 | 36 |
| $83 \mathrm{H} / 1$ | 1922/1 | 1.700 | 11 |
| $83 \mathrm{D} / 12$ | 2009/2 | 16.365 | 41 |
| $83 \mathrm{D} / 12$ | 2010/2 | 13.377 | 45 |
| $83 \mathrm{D} / 12$ | 2011/1 | 3.249 | 28 |
| $83 \mathrm{c} / 16$ | 2013/1 | 7.112 | 27 |
| $83 \mathrm{c} / 16$ | 2013/2 | 9.532 | 43 |
| $83 \mathrm{c} / 16$ | 2014/1 | 7.337 | 32 |
| $83 \mathrm{c} / 16$ | 2015/1 | 2.279 | 9 |
| $83 \mathrm{c} / 16$ | 2017/1 | 4.157 | 31 |
| $83 \mathrm{G} / 4$ | 2018/2 | 3.193 | 29 |
| $83 \mathrm{G} / 4$ | 2019/1 | 6.893 | 24 |
| $83 \mathrm{c} / 12$ | 2106/1 | 10.892 | 27 |
| $83 \mathrm{c} / 12$ | 2106/2 | 7.668 | 19 |
| $83 \mathrm{c} / 16$ | $2112 / 1$ | 7.678 | 39 |
| $83 \mathrm{c} / 12$ | 2208/1 | 9.530 | 26 |
| $83 \mathrm{c} / 16$ | 2212/2 | 3.249 | 46 |

In this case Gynometra polyandra is also found to have poor growth compared to other species.

## Major species - dyameter class thereaf $=$

List of major species is furnished against each grid and plot showing the diameter classes:-

| $\begin{gathered} \text { Grid } \\ 1 \end{gathered}$ | Specie $\mathrm{S}_{2}$ name Di | ter cla sses 3 |
| :---: | :---: | :---: |
| 4/1 | Cynometra pólyandra | 50-59 |
| $4 / 2$ | Calophyllum polyanthum | 60-69 |
| 105/1 | cynometra polyandra | 60-69 |
| 402/1 | Dysoxylum binectariferum | 50-59 |
| 409/2 | Ficus spp. | 100-109 |
| 502/2 | Areocarpus chaplasha | 80-99 |
| 516/2 | Syzygium cuminii | 40-49 |
| 602/2 | Bischofia javanica | 50-59 |
| 609/1 | Michelia champaca | 50-59 |
| $610 / 1$ | Terminalla chebula | 60-69 |
| $614 / 1$ | sterculia febrifuga | 40-49 |
| $615 / 1$ | Cynometra polyandra | 50-59 |


| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 616/2 | Cynometra polyandra | 30-39 |
| $606 / 2$ | syzygium cuminii | 10-19 |
| 709/2 | Mangifera andamanica | 80-89 |
| 710/1 | Premna bengalensis | 70-79 |
| $711 / 1$ | Artocarpus chaplasha | 110-119 |
| 716/2 | syzygium cuminil | 40-49 |
| 802/2 | Dipterocerpus graoilis | 60-69 |
| 810/2 | syzygium cuminil | 10-19 |
| 108/1 | Syzygium cuminiz | 20-29 |
| 1018/2 | syzygium cuminit | 10-19 |
| $1118 / 1$ | Syzygium cuminii | 20-29 |
| 1118/2 | Syzygium cuminii. | 60-69 |
| 11 19/1 | Syzygium cundrii | 30-39 |
| 1119/2 | Gynometra polyandra | 50-59 |
| 1210/2 | Dysyxylum binectariferum | 60-69 |
| 1219/1 | Syzygium cuminil | 20-29 |
| 1219/2 | Terminalia chebula | 90-99 |
| 1310/1 | Lophopetalum fimbriatum | 70-79 |
| 1419/2 | Slamalta insignis | 60-69 |
| 1522/1 | Eugenia species | 50-59 |
| 913/1 | Callophyllum polyanthum | 50-59 |
| 918/1 | Albizzia species | 110-119 |
| 929/1 | Albizzia species | 50-59 |
| 1823/2 | Sterculia species | 50-59 |
| 1909/1 | Cynometra polyandra | 10-19 |
| 1911/1 | Cynometra polyandra | 30-39 |
| 1918/1 | sloanea asamica | 50-59 |
| 2009/2 | Bombax ceiba | 90-99 |
| 2012/2 | Ficus spectes | 80-39 |
| 2013/2 | sterculia species | 50-59 |
| 2106/1 | Terrminalia belerica | 70-79 |
| $2103 / 1$ | Lophopetalum fimbriatum | 50-59 |
| 2112/2 | Cynometra polyandra | 30-39 |
| 2206/1 | Duabanga grandifiora | 60-69 |
| 2208/1 | Dysçxylum binectariferum | 80-39 |
| 2211/2 | Cynometra polyandra | 60-69 |

The frequency of oxcuryence of cymometra polyandra (Pifg) is very high in both the dense tree forests and moderately dense tree forests. In order to bring out an actual picture of Eloristic composition and volume content of these two categories of forest, following information can be furnished.

When we compare the relative proportion, of different species in miscellaneous stratum with the same species in dense tree forest ereac, the following inferences can be noticed: -

1) Sterriha. in dense tree forest areas and moderately dense tree forest areas is higher in munber when compared to the average stemba. for miscellaneous stratum. This difference is to the tune of 255.179 number of stems/ho.
2) Cyrometra pelyamdra(locally known as Plng)contribute a very high proportion of volume in dense tree forest areas. In dense tree forest areas, these species are found in diameter classes ranging from 10-19cm., 20-29cun. 30-39cm. and 60-690m. Neaxly $15-20 \%$ of the volune of Gynometre polyandra $1 s$ Fepresented by tree growth which are in regeneration stage $1 . e .10-19 \mathrm{~m}$. diameter class. Ealance gO-35\% of the volume of the same species can be found in case of trees of higher diameter classes of which nearly $50 \%$ of the volume is conteined in the R\&atheter chass 20-29 arid 30-39ctu. Cynometrea polvandra (ping) is locally a good oonstructional timber and largely utilised by the local poople for various building construction works as well as in malcing small bridges and culverts. Proper management of this species in the dense tree forests and even in mocraztely dense tree forests may help in future to obtain highet field Erom these areas. other important species in dense tree forests are Artocarpus chaplasha, callophyllun polyanthun, Dipterocarpus gracilis, Duabanga grandiflora, Dysezxlun pinectariferum, Kayea Eloribunde, Mesua ferrea, Syzygium Guminii. Next to Gunometra the most important species is Syevrium gurninii. In this case nearly 70\% of the volume is concencrated in the diameter classes 10-19 cm, ancl 20-29 cm. Locally this species is also utilised for constructional purpose. Therefore, appropriate managament of this species in the moderately dense tree forests and as well as in dense tree forests areas whit help the future highner yteld from sucn forests. In case of this species trees higher diameter even up to $80-39 \mathrm{ch}$. can be found in some occasion.

Sunometre polyandra and syzugium cuminii constitutes nearly $25 \%$ of the total volume present $1 n$ dense tree forests areas which is nearly 500 m 3 . So, management of these smali patch of forests with a higher proportion of important spec ies should be almed keeping in view the condition of the forests in rest areas in cachar valley. If a study of accessibility of this kind of forest $1 s$ noticed, it is found that these forests are located very far away from the market. A few sample data collected from the field are Eurnished below :-

GridPlot No. Niature of forests Distance from market


| 4/1 | Dense tree forests | 57 |
| :---: | :---: | :---: |
| $4 / 2$ | - do - | 44 |
| 105/1 | - do - | 50 |
| 204/2 | - do - | 33 |
| 205/1 | Moderately dense tree forests | 105 |
| 209/1 | - do - | 57 |
| 302/2 | - do - | 65 |
| 306/2 | - do - | 17 |
| $307 / 2$ | - do - | 70 |
| $401 / 2$ | - do - | 64 |
| 402/1 | - do - | 65 |
| 402/2 | Dense tree forests | 66 |
| 409/2 | Moderately dense tree forests | 41 |
| 502/1 | - do - | 63 |
| 502/2 | - do - | 52 |
| $509 / 1$ | do | 44 |
| $509 / 2$ | - do - | 60 |
| $514 / 1$ | - do - | 55 |
| $515 / 2$ | Dense tree forests | 63 |
| $516 / 2$ | - do - | 73 |
| 600/1 | Moderately dense tree forests | 67 |
| 602/2 | - do - | 68 |
| 609/1 | - do - | 43 |
| 613/1 | - do - | 55 |
| $613 / 2$ | - do - | 57 |
| $614 / 1$ | - do | 54 |
| $614 / 2$ | - do - | 55 |


| Griq/Plot No. | Nature of forests | Distance from market |
| :---: | :---: | :---: |


| 615/1 | Dense tree forests | 50 |
| :---: | :---: | :---: |
| $615 / 2$ | -do- | 67 |
| $616 / 1$ | -do- | 63 |
| $616 / 2$ | -do- | 63 |
| 706/1 | Moderately dense tree forests | 67 |
| 708/1 | -do- | 75 |
| 709/1 | -do- | 75 |
| 709/2 | - $\mathrm{do}-$ | 75 |
| $710 / 1$ | Dense tree forests | 72 |
| 710/2 | -do- | 76 |
| 711/1 | Moderately dense tree forests | 63 |
| 714/1 | Dense tree forests | 50 |
| $715 / 1$ | -do- | 67 |
| $715 / 2$ | -do- | 51 |
| $716 / 1$ | - $\mathrm{Co}-$ | 65 |
| $716 / 2$ | -do- | 65 |
| 717/1 | Moderately dense tree forests | 65 |
| 302/2 | Dense tree forests | 52 |
| $010 / 1$ | Moderately dense tree forests | 80 |
| $310 / 2$ | Dense tree forests | 70 |

The various distances as furnished in the above Cplot table represent the $\alpha o c a t i o n s$ in the dense tree forests and moderately dense tree forests with respect to the maricet places in the district. Tirnber etc. from such forests are ultimately brought to the markets for disposal. Group classification of locations of dense tree forests and mod erately dense tree forests a re Furnished below and $t$ he data Dresented below will only pertain to the area under miscellaneous stratum :-
 District in km.

Percentage
Dense tree forests Moderately dense


| 30-45 | - | 14.29 |
| :---: | :---: | :---: |
| 46-60 | 25.00 | 33.33 |
| 61-75 | 68.00 | 47.62 |
| More than 75 | 6.25 | 4.76 |

### 4.1.2 open tree forests:

Before a critical analysis of open tree forests under the miscellaneous stratum is considered, a review of dense tree forests and moderately dense tree forests in earlier paragraph is to be referrad in this context.

The inventory in Cachar valley has revealed the presence of open tree forests in both the straturn of miscellaneous and bamboo. The present context of consideration lies only with respect to $t$ he open tree dreas under miscellaneous stratum. The main characteristic of the open tree forest areas is the presence of low volume and exceedingly less number of stems. An analysis of the various grids and plots under this category is furnished hereunder: -
 Mapsheet No. Grid/Plot Volume per Stem per hectare No. bectare(m3)

| 83 D 3 | $5 / 2$ | 1.333 | 10 |
| :---: | :---: | :---: | :---: |
| $83 \mathrm{D} / 3$ | 104/1 | 0.100 | 2 |
| $83 \mathrm{D} / \mathrm{B}$ | 104/2 | U.100 | 1 |
| $33 \mathrm{D} / \mathrm{B}$ | 105/2 | 3.292 | 9 |
| $83 \mathrm{D} / 4$ | 201/2 | 0.150 | 3 |
| $83 \mathrm{D} / 4$ | 204/1 | 0.450 | 9 |
| $33 \mathrm{D} / 4$ | 205/2 | 1.646 | 2 |
| $33 \mathrm{D} / 4$ | 305/1 | 0.250 | 4 |
| $83 \mathrm{D} / 11$ | 307/1 | 3.893 | 6 |
| $83 \mathrm{D} / 11$ | 303/1 | 2-239 | 4 |
| $83 \mathrm{D} / 7$ | 403/11 | 7.337 | 22 |
| $83 \mathrm{D} / 7$ | 405/1 | 1.906 | 3 |
| $83 \mathrm{D} / 7$ | $405 / 2$ | 0.100 | 2 |
| $83 \mathrm{~L} / 11$ | 406/1 | 1.616 | 9 |
| $83 \mathrm{D} / 11$ | 403/1 | 1.100 | 1 |
| $83 \mathrm{D} / 11$ | 403/2 | 2.095 | 4 |
| $83 \mathrm{D} / 1$ | 505/2 | 0.300 | 1 |
| $83 \mathrm{D} / 11$ | $603 / 2$ | 6.572 | 19 |
| $83 \mathrm{D} / 11$ | 506/2 | 0.300 | 6 |
| $83 \mathrm{D} / 11$ | 610/1 | 9.364 | 35 |
| $83 \mathrm{D} / 11$ | 606/2 | 4.269 | 4 |
| $83 \mathrm{D} / 11$ | $611 / 1$ | 1.333 | 20 |

$: 55:$

Mapsheet No. GridPlot No. Volume/ha. ster/ha. (m3)

The flor1stic composition of th is type of forests indicate an interesting feature with regard to the very little occurrence of the following species:-

Albizzia lucica
Bombax ceiba
Ficus species
Mesua ferrea
Dysoxylum binectariferum

Albizzia species
Ca1l1carpa arb-orea
Cynometra polyandra
Cenrella toona

Of the above listed species Cynometra polyandra which is less in number in open tree forests are found in higher frequency in dense tree forests and moderately dense tree forests. With regard to the accessibility of these forestr, it may be stated that these are far from the market places but these can be approached easily with the existing road communication. With regard to the general terrain of these areas, difficultues or obstructions in forest produce. in the past actually caused degradation in vegetation. Degraded open tree forests are found towards the southern part of the Cachar valley, where road systens are better developed and rail heads are easily approachable. Regarding nature of degradation of open tree forests, a classified table is furnished below :-


Farticulars
Percentage


1. Heavily degraded 27.41
2. Moderately degraded 54.84
3. Mildiy degraded 12.91
4. Not degraded 4.84
100.00

It may be mentioned that many of the open tree forest areas are yet to asume the character of total degradation and it iilli be preserved with its present character if some rational measures in forest management policy is adopted. Incidentaliy, it is to mention that timber operations in Cachar 'valley under silchar and Karimganj forest divislons are virtually stopped but there is no dearth of supply of timber. fuel in the market. The import of such forest produces from the states of Manipur and Mizoram can be quoted as the source of such supply in che district but there are also certain limitations in procuring such forest produces from Mizoram and Manipur.

As there is no coal belt near the district, supply of fuelwood largely depends on the local supply from forests. This will mean higher excraction from easy accessible areas without the notice of the state Forest Department. To stop this kind of activity, some rational policy in forest management has to be adopted and the demand of the people should be met by alternative source of energy.

### 4.2. Bambon stiatury:

Little less than $25 \%$ of the surveyed area belong to bamboo straturn. In this stratum banboo growth (Nonclumping) is proportionately higher than the tree growth. The major species of barmboo is Muli (Melocana bemboosoides). Bamboo is not only distributed in this stratum but it is also found in Miscellaneous stratun where its proportion is less. \& continuous tract of bamboo is found in some areas of patharkandi Range, Lowerpoa Range. Florastic composition of bembbo straturn difiers from miscellaneous stratum, some species like Macharanga denticulata, Pyrus species. Lagerstroenia parviflora etc. are conspicous here. Other associates are Callicarpa arborea, Synometra polyendra, Dysoxylun biraectariferum , Ficus species.

Study of plots in this stratun incicates that avera average height $71 \%$ of bamboo stock varies between $8-12 m$ $23 \%$ of the banboo stock can be found in height class 6-3 m. Ehe rest $6 \%$ ining a height class below 6 m . Regarding the condition of banboo in this stratum it may be stated that on average $50 \%$ of tile green banboo culms are damarged. The nature of distribution of green sound and green damaged bamboos along with helght classes are furnished here under.

| Grid No. | plot No. | Totaम SIEen sound | Total green damaged | $\begin{aligned} & \text { Average } \\ & \text { reight }(n) \end{aligned}$ | Total no. of culms. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 |
| 5 | 1 | 36 | 20 | 10.4 | 55 |
| 5 | 2 | 55 | 14 | 10.7 | 87 |
| 100 | 2 | 121 | $\pm 0$ | 14.1 | 183 |
| 101 | 1 | 115 | 30 | 10.2 | 205 |
| 101 | 2 | 73 | 14 | 10.0 | 115 |
| 104 | 1 | 134 | 6 | 9.4 | 206 |
| 104 | 2 | 181 | 8 | 10.4 | 271 |

:58:

| 108 | 2 | 113 | 3 | 9.6 | 220 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 201 | 1 | ${ }^{4} 40$ | 22 | 9.0 | 79 |
| 201 | 2 | 8 | 6 | 6.0 | 15 |
| 203 | 1 | 38 | 5 | 13.0 | 53 |
| 204 | 1 | 77 | 2 | 13.6 | 93 |
| 208 | 1 | 74 | 20 | 12.5 | 172 |
| 208 | 2 | 79 | 11 | 11.4 | 168 |
| $30_{1}$ | 2 | 75 | 14 | 8.0 | 114 |
| 302 | 2 | 113 | 13 | 13.0 | 181 |
| 304 | 1 | 75 | 3 | 11.6 | 80 |
| 304 | 2 | 21 | - | 10.4 | 21 |
| 305 | 1 | 120 | $\cdot 9$ | 7.5 | 169 |
| 308 | 1 | 263 | 8 | 8.0 | 368 |
| 404 | 2 | 44 | 3 | 10.0 | 70 |
| 405 | 1 | 31 | - | 8.9 | 49 |
| 405 | 2 | 69 | 5 | 8.7 | 78 |
| 406 | 1 | 86 | 15 | 11.0 | 188 |
| 406 | 2 | 41 | 3 | 11.4 | 46 |
| 408 | 1 | 146 | 25 | 9.1 | 334 |
| 408 | 2 | 76 | 17 | 10.9 | 171 |
| 505 | 2 | 63 | 13 | 7.4 | 80 |
| 506 | 1 | 32 | 5 | 10.8 | 43 |
| 506 | 2 | 72 | 13 | 9.0 | 125 |
| 510 | 1 | 46 | 3 | 9.3 | 61 |
| 510 | 2 | 78 | 6 | 10.6 | 98 |
| 515 | 2 | 50 | 7 | 9.1 | 87 |
| 608 | 2 | 65 | 17 | 9.7 | 137 |
| 611 | 1 | 102 | 3 | 16.7 | 144 |
| 613 | 2 | 44 | 11 | 11.0 | 76 |
| 702 | 1 | 74 | 12 | 8.2 | 204 |
| 706 | 1 | 119 | 62 | 9.5 | 186 |
| 708 | 1 | 41 | 12 | 11.1 | 63 |
| 709 | 1 | 59 | 6 | 13.2 | 75 |
| 709 | 2 | 11 | 3 | 10.1 | 23 |
| 711 | 1 | 60 | 12 | 11.4 | 88 |
| 714 | 1 | 153 | 19 | 14.0 | 209 |
| 806 | 2 | 25 | - | 7.0 | 29 |

:59:

| 810 | 1 | 7 | 4 | 10.3 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 813 | 1 | 238 | 7 | 10.0 | 152 |
| 906 | 1 | 13 | 1 | 9.5 | 17 |
| 912 | 1 | 46 | 7 | 13.7 | 103 |
| 913 | 1 | 19 | 5 | 10.0 | 24 |
| 913 | 2 | 46 | 8 | 7.0 | 56 |
| 917 | 1 | 37 | 4 | 11.2 | 42 |
| 1010 | 2 | 105 | 28 | 13.2 | 260 |
| 1013 | 1 | 74 | 1 | 6.6 | 90 |
| 1100 | 1 | 101 | 60 | 6.70 | 382 |
| 1300 | 1 | 123 | - | 7.4 | 179 |
| 1420 | 1 | 84 | 4 | 8.0 | 101 |
| 302 | 2 | 6 | 1 | 8.5 | 9 |
| 402 | 2 | 16 | 6 | 5.8 | 26 |
| 404 | 2 | 47 | 5 | 3.3 | 57 |
| 500 | 2 | 6 | 4 | 5.9 | 7 |
| 1218 | 2 | 43 | - | 1.0 | 59 |
| 1318 | 1 | 56 | 1 | 9.5 | 76 |
| 1318 | 2 | 22 | 10 | 3.1 | 32 |
| 1319 | 2 | 71 | - | 8.6 | 67 |
| 1517 | 2 | 11 | - | 6.6 | 12 |
| 1622 | 1 | 102 | 33 | 16.5 | 193 |
| 1622 | 2 | 24 | 4 | 13.0 | 34 |
| 1721 | 1 | 4 | 1 | 18.4 | 8 |
| 1721 | 2 | 3 | - | 0.6 | 7 |
| 1722 | 1 | 47 | 4 | 12.6 | 64 |
| 1819 | 1 | - | 20 | 1.4 | 38 |
| 1821 | 1 | 24 | 4 | 8.3 | 44 |
| 1822 | 1 | 29 | 5 | 17.5 | 37 |
| 1918 | 1 | 10 | - | 3.2 | 12 |
| 1921 | 2 | 23 | 9 | 5.0 | 38 |
| 1922 | 1 | 11 | 1 | 1.4 | 14 |
| 2007 | 2 | 11 | 2 | 6.0 | 15 |
| 2000 | 1 | 13 | 18 | 11.6 | 31 |
| 2009 | 1 | 23 | - | 3.2 | 23 |
| 2009 | 2 | 5 | 1 | 11.6 | 16 |
| 2010 | 1 | 5 | 7 | 9.0 | 13 |
| 2011 | 1 | 6 | 1 | 18.0 | 7 |



If the distribution of culms can be categorized ascording to the number of culms per hectare and classification would be as follows:-

No.Of culms
Eisss than 400
400-800
801-1200
1201-1600 $1600+$

## Percentage of olots

46.37
29.71
7.25
7.97
3.70
100. 00

The classification do indicates thit most of the plots contaln bamboo less than 400. Next to this only $30 \%$ of the plots lies in the class 400-800. Tinis kind of distribution of bamboo culms indicate possibilities of poor outturn from the forests. Regarding the tree volume of plots in this stratum it may be mentioned that expected outturn is likely to be very poor alth-ough there are good number of trees in $t$ he area. This can be accounted fnather from the data furnished below indicating the tree volume in c-ertain plots. Occurrence of $15 / 20$ trees in a plot even contribute volune below 1 m3 1 ndicating poor stem development.
 Grid/Plot NO.

Tree volume/plot in bemboo stratum


5/1
$6 / 2$
404/2 0. 533
9.313

500/2
12.369

506/1
$510 / 1$
6.047
14.051
$603 / 2$ 4.239

703/2 9.493

713/1 4.292

717/2 5.072
$813 / 2$ $\angle 66$
$100^{\prime} 2$
$1012 / 1$
$1016 / 1$
$1210 / 2$
$1318 / 1$
9.062
$1318 / 2$
0.350
$1318 / 1$
9.062
$1507 / 2$
0.550
$814 / 2$
2.400
$815 / 2$
2.596
$817 / 2$
0.500

906/1
4. 102
$911 / 1$
4.769

915/1
2.550

917/1
2.050


Yield:
While considering yield from the forests of Silchar and Karimganj Forest Divisions, the general observations are as Eollows:-

The number of stems per ha. in miscellaneous stratua is 197.446 as per the table No.l.1. Nunber of stem in bamboo stratum is 140.350 as per table No.l.2. Close observation of these figures indic ates thet presence of secondary species in both the strata is very high. In mincellaneous stratum it is 53.05 per ha. whereas in bamboo stratun it is 44.359 per ha. Some common species contribute in significant manner and these are calophyllunpolyanthum, Callicarpa arborea. Cynometra polyandra in miscellaneous stratum. with regard to $t$ he total yield from miscellaneous stratum it is to mention that expected growing stock is B04.265(000)m3. The study of table No.4.l will enable to conclude the volume contribution of various species. Some of the important species convributing more than 100m3 to total growing stock are : Albizzia species, Artocarpus cinolasha, Callobhylum polyanthum Di vterooarpus gracilis, Duabanga grandiflora, Dysoxylum binectariforum, Ficus specis. Kayea floribunda, Messua feriae, Stereospermun jersonatum, Syzugium cuminii, Tectona grandis(PIantation origin), Tetrameles nudiflora, Cynometra Dolyandra.

In both the stratur of miscellaneous and banboo the contribution of volume of secondary species is markly noticed. However, the role of secondary species is more conspicuous in bamboo straium when it is considered in relation to total growing stock of the stratarn. $44.351 \mathrm{~m} 3 / \mathrm{ha}$. is the contribution of volume of second ary species in bamboo straturn and the total growirg stock in that stratum 1.s $190.532(000) \mathrm{m} 3$. This indicates that poor soil condition in bamboo stratum compared to the soil condition in miscellaneous stratum. The total. growing stock of miscellaneous in Cachar valley is 8047.265(000)m3. The extent of miscellaneous
stratum is comparatively larger than bamboo straturn and so the volume content $1 s$ more. The total growing stock in bamboo straturn 1 s 1050.868 (OOO)m3. Many of the areas under miscellaneous stratum will not be available for working due to 5 inaccessible condition of terrain. So, exploitation of timber and ather Eorest produces in more accessible areas ray cause deterioration of crop it no rational metnod of working is adopted. The significant action would be to avoid the agency of contractors and carry out departmental operation according to the condition of crop amd terrain. Besides tree yrowth bamboo is also avalkable in both the stratum. In case of both the stratum, estimation of total bamboo in terms of its dry weight is furnished below : -

## Total growing stock of banboo

 (in ha) tonne/ha. (in 1000 tonne) loo tonne) Non- Clumwing non-Clumping clunping.

| Bamboo | 34410.153 .963 | 6.599 | 136.367 | 227.038 | 363.405 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Misc. | 68296.82 3.167 | 5.094 | 216.296 | 347.904 | 564.200 |
|  | 02706.97 3.434 | 5.595 | 352.663 | 574.942 | 927.605 |

Estimation of bamboo weight as made above is based on a sample survey with a very low intensity and tine reported figure may be considered as indicative. For the purpose of more reliable figure samsling at higher incensity by the state Forest Department $1 s$ suggested.

```
    :65:
GHAPTER:V
LOGGING AND ACCESSIBIIITY STUDIES
```


## General information :

Felling, logging and transportation. operations in Silchar Forest Division as well as in karinganj Forest Division are virtually absent. Only a few coupes are operated from which bamboo and timber are extracted. Bamboo coupes are sold to the purchaser on lease basis. rimber coupes are operated departmentally by the respective Divisional Forest Offlcers. In addition to this. some special felling of forest areas are undertaken in the project areas for railway connection to Vhairabi ir Mizoram.

The forest area in undivided cachar district represents a variety of land masses which include plains, gently undulating country, low hills and steep rocky areas. $30 \%$ of the tract und-er consideration has slope more than $45^{\circ}$ whereas the balance $70 \%$ areas have little or no slope.

### 5.2 Extraction of forest produce:

Bamboo extraction $1 s$ the main activity in forestry operation in both the forest divisions. Usually bamboo is extracted by method of rafting. However, some produces are carried by truck also. Movernent of forest produce by railways can be noticed in the district in the following sections:-

1. Silchar- Badarpur section,
2. Badarpur- karimganj section,
3. Karimganjー Patharkandi section,
4. Badarpur- Hilakanai- Annaghat section,
5. Duriavcharra-Baraigram section.

Movenent of forest produce by railway is very cominon in silohar-Badarpur section and BadarpurKarimganj section. • Rail heads at Silchar, Badarpur and Karimganj are very important for export of forest produce from the district. It appears from the available records that huge quantity of timber (round and sawn), bamboo and canes are transported to the rall heads by rafting and road. Cheap mode of transportation 1s rafting. Transportation to longer distance by river is not possible by rafting where water carriages are availed of. In this process, timbers are transported to Calcutta by river. This mode of transportation altiough cheapest but is not popular because it takes long time to reach the destination. Most of the forest produces are transported by road to calcutta and to places in northern and western India. Towards the southern part of the district lies the Union Territory of Mizoram from where the forest produces are brought to rail heads like Karimganj, Badarpur and silchar by road. However, transportation by water and by river is also noticed.

### 5.3 Raftingt

Considerable quantity of timber,bamboo and canes are rafted and brought to the market and rallheads for its disposal. In Cachar district rivers like Barak, Sonai, Longai, Giri, Katakhol, Dhaleswari, Singla etc. are only availed for transportation. of forest produces by way of rafting. The common routes of rafting arez-

1) Barak river section up to Jirimukin,
2) Giri river section up to Jirimulh,
3) Baralk river section between Jirimuch-Sonai,
4) Barak river section between Sonai and Silchar,
5) Dhaleswarl river section from "Bhairabl
(Misoram) E Kathakhal.
6) Kushiard river section from kachakhal to karimgenj.
7) Longai river section frou Kathakhal to karimganje
8) Kushiara river section from Karimganj to bangladesh,
9) Singla river section Erom Singla to Durlabcharra.

Commonly rafting is extensively used for carriage of bamboo from Bamboo Mahal areas in the districts. Certain quantity of timber and cane are brought to various markets and railheads by rafting. A raft is usually made of bamboo and its size depends on the quantity of produce to be carried. Rafts carrying bamboos are usually longer enough to Carry the produces. Least number of people are required to be deployed for carriage of timber by rafting. In this process of rafting, investment is very little and a set of particular people are always deployed to carry the produces to the destination. There has been a growing tendency in the district to carry illicitly felled trees and bamboo by rafting. This tendency is not so high in dry periods but during the rains larger quantities of forest produces are carried by rafting whtch include some produces removed steelthy. In a swift flowing river, it is not possible to intercept and stos the movement of forest produces by raft and carry out some sort of checking. In Cachar district substantial quantities of timber, bamboo and cane are carried from Manipur to places like Jirimukh and silchar by way of rafting. In this process again the forest produces are transported stealthy from the Goverment forests in Cachar aistrict. A schematic representation of movernent of forest produce by rafting and locations of some consumption centres are furnished in this report which would indicate the necessity of setting up some kind of checking at those points to discourage illicit transaction forest produce.

### 5.4. Departmental timber operation:

Departmental timber operation in Silchar and Karimganj forest dyvisions is very much limited. No separate infrastructure has been developed by the Department of Forests in these two forest divisions to und ertake departmental operations of timber coupes on a large scale. Introduction of this cheme is likely to be an experimental basis and also will encourage the climination of contractors in forest management.

Under this system, labourers are directly engaged by the Departmental staff and all operations are carried out with the help of local labourers engaged on daily labour basis. The expenditure on feiling, logging and transportation as prevailed at the time of inventory are as follows:-

1. Cost of felling, logging and debarking- k. 22.25/n3 where necessary,
2. Off-road transpormation of the produce by way of Elephant dragging or rolling by human agency.

Ps. $178.00 / 1 \mathrm{n}^{3}$
3. Conversion of the produce to standardized stock of firewood

$$
\text { Ps. } 20.00 / \mathrm{m}^{3}
$$

As the labourers are engaged for this purpose, they are pald on labour wage on daily bais but their outputs are to be fixed to meet the expected outturn in each day commensurating and earning to minimum of ks . 20/- to $25 /-$ per day. The standardized process of conversion of trees into round logs and firewoods involve conversion of $\operatorname{lm} 3$ of wood and this will enable a labour to earn minimum Rs. 20/- per day. As the magnitude of work in departmental operation is very low in the districts, only 770 persons(skilled and unskilled) were employed directly in departmental operation. In direct employment about 2000 persons are employed on account of the departmental operation. Contractors rate for felling. logging and rolling etc. will be nearly $5-10 \%$ which usually marked for profit by the contractors. In the process of d epartmental operation, this profit will not go to the contractors but will be fixed by the labonners engaged for this purpose.

Sufficient Labourers both skilled and unskilled are available in both the districts for future expansion of departmental timber operation shcheme. Other infrastructures like road, river and market are already in existence except improved techniques of felling. logging winch are to be introduced to achieve least loss of timber at the time of conversion. Introduction of power chain saws and other mechanlcal devices are discouraged because kacker tooth saws and Bow saws will engble the labourers to give more output on each day to earn more money. Some sort of training may be

Contemplated for the labourers who will be engaged in departmental operation. This kind of activity will also help the department of forests to build up a batch of trained personnel to assist any forestry operation in a better way. Successful implementation of departmental operation will entirely depend on the performance of the lab-ourers engaged for conversion of trees into logs and transportation of the same to the destination points in appropriate time.

## :70: <br> CHAPTER: YI <br> CONSUMPITON STUDY

### 6.1 Introduotion:

A study on the consumption 'peittern of wood and bamboo in the dietrict of Cachar, Wae undertaken alongwith forest invent ory and it was conduoted by Forest Sur vey Of India etaff of Headquarters and Eestern Zone, Calcutta.

### 6.2 Objeativer:

The etudy was made with the following objectives:

1) to aseess existing use of wood and bamboo for houes conetruction and to estimate annual coneamption of timber and bamboo for conptruction puposes, and
1i) to estimete coneumption of wood forfurniture. agricultural implements and domestio fuel.
6.3 Gonaumption by large Induetrieg:

No laree industry which congumes foregt produce existe in the aistrict. Public eector undertaking H. F.C. Ae setting up a Paper Kill at Pancharam near Badarpur. This industry hes not vet been commisaioned.
6.4 Consimption by emall induetriee:

The only wood besed induetry that exists in the dietrict ia Saw Milling. There are 42 Saw Mille. The Eawn produote are consumed locally and some quantity fe exported aleo.

Apert fromthe Saw Mille and the propoeed Paper M1ll, there are one Tea Cheat Induatry with a capacity of 20,000 eete of Tea Chest production. Aleo there in one Plywood factory which has the capecity of production of 24900 eq. of ply annually.

### 6.5 Hounahold coneumption:

Under thie consumption of wood in four broad cetegoriee exe considered. In.addition to this consupption of K.oil and bamboo are alao considered.
i) House consutruction,
ii) Furniture.
iii) Agricultural implemente,
fv) Fuelwood,
v) K.oil(Itra.),
vi) Bamboo.

### 6.5.1 Methodolofys

From the Céneus of India(1971) a ligt of villagea of Cachar diatrict was prepared. Villagea were selected randomiy with the help of "random teblee". For proper repreaentation of the whole dietrict, the villages were selected far and near to the forent radially.

In the second atege of apmpling the randomly eelected villagee were etratified into rural and urben groupe. Actuel selection of households in both the cases was made on local enquiry and they wexe numbered auitably to carry out the eampling and collection of data. In rural areas, 7 forest villages and 19 revenue villagee were ligted out finally and eample date were collected from auch villages. In urban areas the work was moetly concentreted in silchar town and eltogether 44 households were sempled and. intensity of gampling was mearly. $2 \%$. The gempling fntensity in maral area was...

### 6.5.2 Estimetion of uge of wogd in the householde:

As indicated earliex in the para 6.5, the consumption of wood in e honeohold may be on eccount of various reasong like house congtruction, furniture making, egricultural implemente making, domeatic coneumption of fuelwood. In addition tothis, K.oil la aleo üe日drin household for lighting purpose mainly.

## :72:

Galouletion of consumgtion of wood and K.oil on account of the above reasons was arrived in the following manner:-

> I (No, of house in the alatrict)
> $N \quad x \quad 20 *(T o t a l$ production of the diatrict)
> Where $\quad=$ Totel consumption of wood per house of all the eampled villagee(rural \& urban)
> $N=T o t a l$ number of houee of the earapled village/urben townehip in the district.

* 2 years for agricultural implomento.

Iffe period for house construction with timber and bamboo has been taken as 20 tyeare, the life period for locelly availeble wood used in furnitura making $h_{a b}$ also bean taken an 20 yeare and finally the life period of agricultural implemente made of locel wood ie congidered es 2 yeare. No life period is required to be coneidered on account of coneumption of domestic fuelwood and K.oil in both rurel and urben oample areas.

On the bagis of the above formula, celculatione were carried ont and consumption of timber, fuelwood, bamboo and K.oil on per cepita babie fere derivod for both rurel and urben population of the district.
6.6 Hood 2Bed for houne congtruction

Nearly $80 \%$ of the housea in the rural areas are kutcha or eemi-kutcha- built with mud and bamboo wall and thatched roofe and tin roofg elso. Moetly bamboo ie ueed for making roof and walle. Wooden beame are used for eupporting the roofe and bemboo frame of the houee. wood is mainly ueed for making doore and windowe. Quantits of rood ueed for meking wooden penele ig quite Igrge. Whe net wood for house conbtruction during the gurvey ig about 119074 m 3 for rurel and 190963 m 3 for urban eree. The per house conaumption of wood ie 3.538 m 3 . The per capite annuel consumption of wood for house construction 1 B 0.029 m 3. During the guryey period, no house conetruction activities were observed in the diatrict. The life of housea is ensumed es 20 yeare approximetely.

| 6.7 | Wood requirement of furniture : |
| :---: | :---: |
|  | The rural people's need for furniture is $v e r y$ lese with the comparison of urban area. The furniture items generally ueed by them are, wooden cots, chowleies, benches, chaire, tables etc. Sometimes wooden almirahs axe aleo noticed while oorducting the euryey in some housee. The net present wood e日timated for furniture iteme ie about' $346320 \mathrm{~m}^{3}$. |
|  | To arrive at annual oonaumption for furnituren is aseumed that the life of the furniture would be appraximately 20 years. Because all are indoor iteme and are leas exposed to weathering, thue an avarage of $17316 \mathrm{~m}^{3}$ wood is annually required for replacement of repair of furniture and per capita consumption (annually) is $0.0085 \mathrm{~m}^{3}$. |
|  | In the urban localities where the uees of furniture ie more in different iteme viz. Bofa 日eta, palang cot, chair table, book-aelfe racka, cloth hanging racke (towel atand) dinning table, dreasing table etc. were obaerved and the net wood for the firwiniture in urben areas heva been eetimeted to about 46662 m 3 . The annual wood requirement for urban areas would be about 2333 m 3 yearly and per capita annual oonaumption will be . 013 m 3. |
| 6.8 | Wood reondirement for erericulture implementer : |
|  | Under this cetegory all wood utilized for agrioultural purposes have been coneidered. These include plowghe, yoke, tool handles, Dekki and dauw. All euch equipmente are used by rural population. The net wood used during the period of aurvey was about 61927 m 3 . As per tho 1 pformetion collected from villagers theie ttems are required to be replaced by 2 years life oepecity 1.e. 30963 m 3 will require for anrual usage of wood for agriculture implemente in the diatt. and per capita anmal usage for agriculture implements wHII be 0.015 m 3. |
| 5.9 | Hood requirement for fliowood congumption : |
|  | Wood around the world in the basic raw matertal being utilized by mankind aince the premitive ege of civilization. As the day by day the scientific methode dereloped the other rew materiale dieplayed the moet commonly ueed fuelwood by kerosene oil, coal and electricity etc. |


#### Abstract

-the e All $A$ developing countries presently use wood as fuel because it in readily aveilable in a very early method. Nearly $80 \%$ of fuel requirement is met from wood and other vegetation. The extreme growth of population and extensive induetrialization increased the demand of fuelwood tremendously. Thue the presence on foreet increaped menifolded. That ie why the oondition of foreats ere deterioreting dey by ay becaupe ruthleas hecking of jungle .

The mejor fuel used in India are wood, coal, kerosane oil (natural gas) animel dung cekes, and elettricity. Bealdes theae, agricultural watea are also being uaed even by induetries like augar mills etc.

In the Cachar diatrict of Asbam, all the requirer ment of fuel energy is made by the wood. All the rural population of the villagee is wholly aependern on the local foreats which is easily acceseible and the firewood are oollected from jhum khati of the villagere which they revisit in every 4th to 7th year. The total annual conaumption of fuelwood in the district is nearly 2117453 m 3 (round) in rural area and 107885 m 3 (round) in urban area and per capita conemmption of fuelwood is estimeted to 1.048 mb and 0.6211 m 3 for rural and urben area respectively.


6.10 Keropene oil xeauirement fox coneumption :

Kerosene oil is the second eesily available petrolium product for use of burning, cooking and lighting purpoees, which in eome extent repleces the fuelwood in the urban area日. The total annuel coneumption of K.Oil as worked out by domestic consumption eurvey is approx. 27603069 litres and 4478100 litres for rural and urban araa respectively. The per capita usefe of k.oil is 13.7 litrea and 25.8 Iitree for rural and urban areas reapectively.

### 6.11 Bamboo reguirement:

Bamboo de the poor man'e timber and the conventional raw materials being utilized by the people of Cechar on every eteop.

Bamboo 1e used for various purposes 1 .e. house construction furniture, agricultural implemente, babket, matting, utenails, bounderies, fending etc. The main coneumption of bemboo is for house conetruction matinly for making roof frame over which either thatched greas or tiles or tins are put. Bemboo ie also used for the aupport of mud plaster walle. In addition to this bamboo is exteneively ueed for feacing purposes in countryard cattle aheds and gerdens. The dietribution of barmoo in the district is almost even, non-clump forming bamboo muli (Malacona bambuegideg) is mainly available in lower hills and in jhum kheti. clurr forning bamboo latange(Dendrocalemue striotue) is elao eveilable in plenty in the distriot. The longivity of bamboo houses in the distriot is ebout 20 years. It means a house aftar every 20 yeare becorr new or fully repaixed by replacing the new bamboo. On average it ie aseumed thet $50 \%$ of bemboo would be annuelly replaced.

Tocelculate concumption of babboo in terme of weight ia very difficult because of verying eizes used. The length end diameter clabe of bamboo used very from 1-12 metres and 1-10cm. dia. respectively.

In Gachar diatrict the Eeneral trend of the bamboo eizes were converted into 3cma. to 6 cms . and 7 cme .to 9 cms . grous with the everase length of 6 metrea for every apecies. The totel annual conaumption of bamboo is eatimated ajout 41737920 nos. and 24568880 nos. (3-6 cme and 7-9cms.)in rural area and 7699902 noe. \& 897357 nob. (3-6cme, and $7-9 \mathrm{cms}$ ) diameter in urban area respectively.

Thue per capite annual coneumption of bemboo in rural araa
 respectively) and in urben area about 46 moe. and 10 noe. (dia.clase 3-6cma. and 7-9cme.reapectively).

These above estimations have been aerried out under the average length of 6 mtre. of bamboo in mural and urban areas of the district.



Referring to above table and table No. 1(a) under pare 6.12.1, it would appear that there ia huge gep between the coneumption and actual eupply from verious reeources availeble from recorded removal of forest produce. It ie not known from which eowrces auch huge quantity of timber and $f u e l w o o d$ aro available for the local people to meet their demend. Actually the quentity available from recordea removal in the forest will not conetitute even a megre frection of consumption of timber and fuelwood calculated by sampling. This indiceter ceqkes of removal from foreste ia continuing in an unabated menner which mey ultinately ceuse depletion to the growing stook. However, there are poseibilities of some unrecorded inport of timber and fuelrood in hhe district but which mey likely not form eny eignificant pert of the net con eumption of timber, fueflwood etc. in the diatrict as calculated in this report under pere 6.12.1 and 6.13.1.

Regerding bamboo coneumption for dométic purpoee referenae in invited to the table numbet 6.12.2 and 6.13.2 wherein the situation of coneumption in rural and urban areas can be studied. Bamboo ie chiefly ueed for making hutmente. The net requixement of bamboo in rurel and urben areas ís 72.45 lakho. The recorded renoval of bemboo from $^{\text {alf }}$ the foreeta of undivided Gecher dietrict ig 49.37 lekhs. In eddition to this neerly 19.75 lakhe of bemboo are imported from Menipur and Mizoram. Thie total of 69.12 lakhe of bamboo is already inadequate to meet the local demand of 72.45 lakhe an mentioned already. There ia commerce and trade activities for bale of bamboo outaide the Cachar diatrict and in thie proce日s nearly 20.60 lakhe of bamboo are exported out to vartous pertis of the country. In a nutahell, it appearethat net requirement of bamboo for internal consumption and export outaide the dietrict in nearly 93.05 lakhe. As etated already the recorded production and import of memboo is 69.12 lakha. So, there is a huge gap in production and utiliaation of bemboo in the district and this colculates out to be 23.93 lakhe.

The exact source of supply of bamboo ff euch huge quantity cannot be other than Government fore日t日. Foreste in the Tea Gardeng and Revenue Janda are already destroyed and cannot jiold fuch huge quantity of bamboo. In view of this sitmation the bamboo forests in Cacher distriot must hare bemover worked and which will ultimately destroy the potential of the foresta. Special emphasia ia to be given on the source of Eupply of 23.95 lakhe of bamboo beceuse bemboo foreete in Cecher diatrict are to be utilized for runnlng the Paper Mill of Hincuatan Paper Corporation at Panchgram near Badarpur.

# ECOLOGICAL CHANGES AND STATUS OR FLORA \& FAUNA 

7.1 Distürbance:-

Degree of

The miscellaneous and bamboo forests of Cachar were subjected to various activities on account of non-scientific method of management. Initially the forests started depleting on account of shifting cultivation, reising tea gaxdens and settlement of population at the beginning of $20 t h$ Century. Trees bamboos and canes were extracted by the local people at free of charge for local consumption. As a result of this, trees were removed without any silvicultural consideration. subsequently, permit system of removal of trees by traders $c$ ausea huge damage to the growing stock. Under such permit system the traders indulged removal of trees from accessible areas which led to large opening in canoples and regeneration of many species was hampered. In pre-independence period removal of produce on permit system actually depleted the growing stock. Valuable species in the high girth/dfameter were removed without consideration of regeneration. Traders opposed to long term of leasing spread over a number of blocks because of poor infrsstructure for extraction. As a result, forests were over worked in accessible areas when practically no checking could be imposed.

Systematic management of Cachar forests was aimed at in the Working Plan 1957-58 to 1971-72. As per Working Plan trees of higher diameter were available in forests and extent of bamboo bearing areas in the forests was estimated. The operations were suggested keeping in view of the condition of forests with an objective of sustained supply of forest produce. The systen of management emphasized removal of trees by number above expolitable girth class. No clear felling was prescribed. The trees of exploitable girth classes were removed and no volume check could be applied. As a result of this situation stealthy removal from forests could not be stopped. In addition to this, the expansion of forest settlement, encroachment of forest lands, and introduction of Pan-jhum in certain areas really become the source of forest depletion. Shifting cultivation in some areas caused degradation of forests. Blanks, less productive areas, degradi. forest cover caused alarming situation during 1980 and all operations were closed except bamboo exploitation.

The gradual deterioration of forests started in earlier days of 20 th century when no management systen was introduced with a scientific base. As a result of this, many areas were depleted to such ań extent that no operation could be suggested in working. The working plan 1957-58 to 1971-72 located such areas in reserves of Banail. Jiri, Bhumban. Sonari, Dholai, Bhairnbi, Slngla, Longari, Tilbhum and Patharia. All these reserves were accessible in earlier days and rem-oval ${ }_{\lambda}$ trees were done in large number without considering the regeneration aspect. Extent of such areasi about 30 years back was 914 sq. km. or $38.5 \%$ of the total forest area. Condition of the forests further detarlorated durlng last 30 years or so. Many areas located as poorly stocked rind 1957-5日 could not be restocked resulting in vast blank areas with poor shruby growth. Blank areas detected during this inventory represent this category and some shifting cultivation(abandoned) areas.

The proportion of distribution of trees in Cachar during 1957-58 and during 1982-84 in various girth/diameter class would reveal that growing stock was depleted during last 30 years.
$\left.\begin{array}{lcc}\begin{array}{l}\text { Reporting } \\ \text { Year }\end{array} & \text { Pbove } 60 \text { cm. Percentage of trees } \\ \hline 1957-58 & 16-20 \% & 80-84 \% \\ 1982-83 \\ 1983-84\end{array}\right) \quad 1.80 \% \quad 98.20 \%$ follows :-

| Reporting <br> year | Bamboo Per hectare |
| :--- | :---: |
| $\left.\begin{array}{lc}1957-58 \\ 1982-83 \\ 1983-84\end{array}\right\}$ | 4000 |

Increase in percentage of trees in lower dameter classes isindicative of remóval trees of exploitable size leading to destruction of growing stock and poor yield from forests. The increase $f$ n percentage of trees of lower diameter classes is not Indicative of better regeneration status because vast areas are now open forests with poor stem distribution.

Bamboo bearing areas estimated in the Working plan as $571 \mathrm{sq.k.m(approx)}$. under Bamboo(overlapplng) Working circle during 1957-58. The present inventory shows that bamboo bearing 1s at least 344 sq.km. This indicates that due to uncontrolled ramoval of bamboo and inadequate regeneration in forests nearly $227 \mathrm{sq} . k \pi$. was destroyed and converted into almost blank area. Even in the barnboo outturn, there is a sharp fall. The outturn of figure estimated in 1957-58 is fairly poor when compared with current estimate.

| Reporting Year | Outturn per hectare |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Bamboo pure |  | ```Bamboo mixed with misc. species``` |  |
|  | NO. | Wt./tone | No. | welght/tone |
| 1957-58 | 7500 | 35.05 | 4000 | 16.6 |
| $\begin{aligned} & 1982-83 \\ & 1983-84 \end{aligned}$ | 4216 | 15.38 | 2598 | 8.6 |

This situation sharply focus in the current management system and indicates scope of improvement to get a better outturn with some suitable measure.

Shrinkage of vegetation oover is also noticeable. In 1957-5B nearly $914 \mathrm{sq.kn}$. was found to be extremely poor $\ddagger n$ stock due to overworking. These areas were easily accessible and excess removal of trees actually depleted the stock. such areas constituted the protection working circle of the Gorking plan (1957-58) to 1971-72). These areas at that time constituted nearly 38.5(approx.) Rest forests i.e. $61.5 \%$ of the area was good in stocking and prescriptions were laid down accordingly. The present inventory indicates the following situation compared with the status of forests:-


914 sq.km. under Protection Working Circle(Working Plan) was partially restocked by artificial regeneration. But this failed to bring a change in the total growing and forest cover in the district. It is apparently clear that areas outside protection working oircle of the Worling Plan suf ferred from over felling on account of some reason and failed to get restocked by regeneration. This ultimately led to the increase in area under the category blank and poorly stocked as stated already. Some total effect of depletion of forests many marshy lands(iocally known as Thal)with vegetation have disappeared and these areas are now under cultivation. Further areas were brought under cultivation in recent past by the forest villagers on account of expansion of the forest villigges.

## RESULTS AND CONKLUSIONS

## Results :

The management of evergreen and semi-evergreen forests of Cachar valley during the pre-independence period and postindependence puriod have resulted into degradation of forests. The present inventory indicates the following :-

1. Although shifting cultivation has been stopped to an appreciable extent in the cacinar valley but sone forest areas have been put into use othern than forestry purpose. This is chiefly on account of conversion of forest lands into permanent agricultural land. In para 3.4.1 the extent of agricultural land has been indicated. Utilization of forests land for growing fruits has bean noticed in course of this inventory.
2. Degradation of forests has already been discussed in Chapter-IV of this report indicating that more than $25 \%$ of the forest areas has been degraded heavily. This may be on account of removal of forest produce without considering silvicultural aspects.
3. Process of degradation on a mild scale has been noticed only over $12.91 \%$ of the forest area.
4. In the Chapter-VI of this report, it has been indicated that huge quantity of timber, pole and fuelwood are raquired for consumption by the population of the district. Recorded production figure indicates that only a little portion is available from the forests of Cachar valley.
5. Extension of Tea industries in the 21 st Century will create empoloyment for local people and consumption of timber,pole, fuelwood and bamboo will increase appreciably. Tea processing may be arranged through alternative sources of energy i.e. with coal. The labourers in the tea garden, as per the present practice. might have to be supplied timber, pole and fuelwood.
6. The condition of forest based industries in the district is highly disorganised.

## $: 85:$

7. Ermploynent through forest based industries may be increased but sounce of raw material for the industries will not be available with in the district unless a worling scheme is introduced for farest management.
8. The present practice of importing timber, fuel and bamboo etc. from the adjoining states may not continue because of increase of demand of these iterns in those states. rfais will create not only difficulties in the industries of the districts but cormon people will not get Euelwood at a reasonable price from the market.
9. System of management of torests of patta land through the Deputy Commissioner of the district have to be examned. Removal of trees from patta land $\pm$ n not nov under the control of any agency.
10. Huge gap of demand and supply of fuelf in the district is likely to increase in near future.
11. Area planted in each year will not be enough to meet the demand of the people in Euture. So, plantation activity in the district is to be increased.
12. Since the cachar valley is dreiried by a number of rivers, menagement of the forests should be absolutely scientific to avoid soil eqosion and flood. Various flood control measures taken by the district authority will not really help the local people unless the catchment areas of the rivers are managed by scientific method.
3.2 Recommendations and proposal:

In view of the status and condition of the forests in the undivided Cachar district, the following points may be considered in the management of forests:-

1. All derilict areas in the cachar district should be planted up immediately with fuel and fodder species. This will enable the local people to get the supply of fuel and fodder and small timber.
2. Implenentation of plantation schemes on a larger scale may be arranged through more input under Social Forestry.
3. Proper attention $\pm s$ required to be given to meet the local demand from recorded production of timber, fuelwood etc. This will enable to reduce stealthy removal of forest produce from forest areas.
4. Forests areas are not now worked except in a few patche. As a result of this less quantity of timber, fuelwood. pole etc. are now avdlable for consumption of locial people. So, it ís necessary to consicler whether more areas can be clear felled and supply of timber, pole, fuelwood etc. may be increased for local consumption. In this process, export of these forest proc̣uces may be controlled by suitable method.
5. Forest protection in cachar valley is to be augrnented. to avoid femoval of timber, pole etc. from both high forests and plantationt. Many Teak plantations have been felled and trees have been removed without any sanction. similarly, valuable timber species have. also been removed from several areas without any authority.
6. Revision of working plan is neeessary and tnis inventory report may form the basis of preparation of such worlelng plan. since the revision of working plan might take sometime, it may be consider whether a temporary working scheme may be drawn up to manage the forests of silchar and Karimganj Forest Divisiots.
7. Removal of forest produces by the Tea garden athority has ibeen noticed to be unregulated. Many forest areas under tea gardens have been noticed to be without any use by the owner except for removal of forest produces. Surplus tea garden lands with forest cover may be resumed to the state Fordst Department for appropriate management. suitable initiations in the matter may be made by the local Divisional Forest officers.
8. Alternative source of energy lise coal,k.oil, etc. are not available in many areas. Tinerefore, utillzation of fuelwood for domestic purpose will continue in future. Source of supply of fuelwood may also be aimed from private sources. Local people may be motivated to grow fuel, fodder in their own land to meet their demand in future. At the time of carrying out this inventory it was noticed that under Social Forestry more attention has been paid to raise strip plantations on road side. Growing of crees by the fanners and other category of people in rural areas need be consider on a priority basis.
9. In the matter of implementation of social Forestry more infrestructure 1 s to be developed and participation of people should be sought.
10. Implementation of Schemes Like N.R.F.F.. R.I.E.G.P. schenes will enable implementation of social forestry on a larger scale.
11. In the rural development, villages in an around forests should recelve priority in the matter of economic progranme. In this process the demographic condition of more villages need be sampled and proposal may be prepared by the Forest Department. The proposal should be forestry oriented with the idea of creation of some assets.
12. Working Plan for the Forest Reserve of Cachar Division - 1957-58 to 1971-72 by Shri P.N.Mulherjee. Deputy Conservator of Forests.
13. A brief Ecological sketch of the Botany of Assarn.
$: 89:$
STEMS PER HECTARE BY SPABLE NO. 1.1
STES AND DIAMETER CLASSES (IN CM.) $\quad$ DISTRICT - CACHAR STRATUM - MISCELLANEOUS $: 89:$
STEMS PER HECTARE BY SPABLE NO. 1.1
STES AND DIAMETER CLASSES (IN CM.) $\quad$ DISTRICT - CACHAR


 -...-.-.........








$$
: 94:
$$














1111
$\infty$
$\infty$
$\infty$
$\infty$ 11



L18* R Maearanga denticulata(425) Macranga indica(426) Macaranga pe1tata(427) Macaranga pustulata(428) Mangifera indice(444) Mansonia diplee (452) Mesua ferrea(460) Monsonia spectes (477) Monsonia specieo (490) Myristica species(490) Premna bengalensis(552) Pterospermum acerifolium


Pyrus pashia(5'8) Pyrus pashia(578)
Sapium baccatum (620) Sch1ma wallichi1 (627) (0६9)wnf pxeorie sndxeooves Sloamea assamica( 636 ) Spondtas pinnata(642)
Sterculia footida(646) Sterculia villosa 649 )
Sterculia species(650) (652)
Sympiocos crataegoides(662) Syzygium cumini( 665 ) Syzygium species(668) Tectona grandis(673) Terminalia chebula $(679)$
Terminalia citrina $(680)$ Tetraneles nutiflora(688) Trewia nudiflora(695) V1tex penduculeris(713) O $\left.\begin{array}{l}\text { Zanthoxylum alatum } \\ \text { USIDENTIFIED TRESS } \\ (924)\end{array}\right)$

[^1]> HAL

$----2--=-=$
 $\begin{array}{llllllllllll} \\ : & 97.445 & 20.362 & 11.090 & 6.181 & 3.091 & 0.545 & 0.545 & 0.364 & 0.182 & 0.182 & 0.182\end{array} 0.182140 .350$ $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
-




E
STEATUM - MISCELLANEOUS
AdIna cordifolia(24)

Adina oligocephela(26)
Aegle marmelos (28)
Agalia edulis(32)
Agaliaspecies

18
$=-$
$0-19$ -.8
.004
006

## VOLUFT PFR HECTARE BY SPECIES ARD DIANETER CLASSES (IN CM.)



| Specter name \& code | $\mathrm{D}_{\text {iameter }} \mathrm{classes}$ (in cm.) |  |  |  |  |  |  |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 |  |  |  |  |  |  |  |  |
| Conarium bengalensis (135) | 0.002 | - | 0.010 | - | - - | = | - | - | - | - | - | - | 0,012 ${ }^{-}$ |
| Canarium euphyllum (136) | 0.006 | - | - | - | 0.065 | - | - | - | - | $\cdots$ | - |  | 0,071 |
| Canarium resiniferum(137) | 0.045 | 0.037 | 0.063 | 0.092 | - | - | 0.089 | - | - | $\cdots$ | - | - | 0.326 |
| Canerium species(139) | 0.011 | 0.011 | 0,042 | - | - | - | - | - | - | - | - | - | 0.064 |
| Careya arborea(143) | 0.006 | . | - | - 0 | - | - | - | - | - | - | - | - | 0.006 |
| Cassia fistula(151) | 0.002 | -' | - | 0.046 | = | - | - | - | - | - | $=$ | $+$ | 0.048 |
| Castanopsis hystrix(156) |  | 0.007 | - 0.010 | 0.046 | = | - | 89 | - | - | - | - |  | 0.654 |
| Castanopsis indica(157) | 0.011 | 0.019 | 0.010 | 0.046 | - | - 0.076 | 0.89 | - | - | - | - | - | 0.176 ' |
| Castanopsis species (159) | 0.061 | 0.067 | 0.073 | - | 0.065 | 0.076 | - | - | - | - | - | - | 0.342 |
| Cedrella toona(162) | C.045 | 0.022 | - | 0.067 | 0.039 | - | - | - | - | - |  | - | 0.172 |
| Coltis australis(164) | . | - | = | 0.046 | - | - | - | $\square$ | - | - | - | - | 0.046 ${ }^{\prime}$ |
| Chukresia velutine(171) | 0.007 | 0.090 | - | - | - | - | - | - | - | - | - | $=$ | 0.037' |
| Cinnemomum ther ing: cecidodaphne(175) |  | 0.015 | - | - | - | - | - | - | - | - | - | - | $0.015{ }^{\prime}$ |
| Cinnamomun tanala(176) | - | - | - | - | - | - | - | - | $=$ | - | - | 0.109 | 0.109 |
| Cinnamomum species(178) | 0.007 | 0.011 | 0.070 | - | $\square$ | - | - | - | - | - | - | - | 0.029 |
| Cordia fraerantissima(193) | 0.011 | - | - | - | - | - | - |  | - | - | - | - | 0.01 T |
| Crataeva undlocularis (203) | 0.002 | 0.004 | - | - | 50.0 | $\cdots$ | - | - |  |  |  | $-$ | 0.006 |
| Cullenia excelsa(212) | - | - | - | - | 0.055 | - | - | - | - | - | - | - | 0.065 |
| Gupresssus spectes(215) | 0.002 | - | - | - | - | - | - | - | - | - | - | - | C.002. |
| Cymosperin species (217) | 0.002 | - | 7 | 5 | - | - | - | - | - | - | - | - | 0.002 |
| Cynometra polyandra 218 ) | 0.649 | 0.868 | 1.097 | 0.411 | 0.450 | 0.360 | - | - | - | - | -1 | - | 3.836 |
| Dillenia indica(229) | 0.011 | 0.011 | 0.031 | 0.139 | - | - | - | - | - | - | 0.109 | - | 0.302, |
| Dillenia pentagyna(230) | 0.009 | 0.007 | 0.052 | 0.092 | - | - | - | - | - | $\square$ | - | - | 0.162 |
| Diospyros moianoxylon(234) | 0.006 | - | - 0.105 | 0.046 | 0.06 | 0.076 | - | - | - | - | - | $\square$ | 0.052 |
| Diospyros spectes(240) | 0.046 | 0.056 | 0.165 | 0.046 | 0.065 | 0.076 | - 0.107 | - | - | - | - | - | 0.394 |
| Dipterocerpus eracilis(242) | 0.030 | 0.089 | 0.056 | 0.033 | 0.202 | 0.153 | 0.107 | = | - | - | - | - | 0.669 |
| Dipterocerpus macrocarpus $(244)$ | - | - | - | - | - | 0.076 | - | - | - | - | - | - | 0.076 |
| Dipterocarpus tuberculatus (245) | 0.015 | 0.022 | 0.084 | 0.046 | 0.065 | - | $=$ | $=$ | - | - | - | - | 0.232 |
| Dolichandone falcata 247$\}$ | 0.002 | ก. 204 | - | 0 | 0.057 | - 0.12 | 0.072 | - | - | - | - | - | 0.002 |
| Duabenga grendiflora(251) | 0.089 | 0.204 | 0.235 | 0.235 | 0.057 | 0.122 | 0.072 | - | - | $=$ | - | - | 1.015 |
| Diospyres 5pp. (Kalacuse(235) | 0.002 | 0.015 | 0.010 | 0.046 | - | - | - | - | - | - |  | - | 0.073 |

$$
1111
$$

$$
1111111
$$


$=$
$=$
-
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
-
$=$
$=$
$=$
0.109 8
0
0 $\begin{array}{lll}8 & \text { m } \\ 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1\end{array}$

0.094



## Contents

$4-* *$
3 and SNRATUN : DAYBO日' Species mane - \& code

-     -         -             -                 -                     - 

sdita equrdtiotia(24)
Agalla; andamarica(3)
Atbiżia Lebbek (41)
albiziza Iuelda 42 ...
Ablzziaptocera(45)
Albizzia "tpectes (46) 0.045 0.109 Aistondísischolitis (52)r, 0,009 0,018 Aroora "山alliebil (56) 0.009 0.018 Anthéeephalus cadamba(65) $0.027-4$ Artocarpus chaplagha (75 \% $1=145$ 0.582 4 stocarpus epacies (00) Éabinida purpuráa(96) Baibinia retusa(98) r Bellseriota assemioa
(121)

Callophyllum polyanthum(127)



 $\begin{array}{ll}\text { Cedrella serrata(161) } & 0.009 \\ \text { Cedrella toona(162) } & 0.036\end{array}$

Cedrella toona(162)
Chukrassia velutina(171)
Cinnamomum species(178)
Cynometra polyandra
Dillenia indica(229)
Dillenia pentagyne(230)
Dillenia pentagyna(230)
Diospyros spectes (240)
Dipterocarpus macrocarpus
Luabenga grandiflora(251) Dysoxylum binectariferum

## .18 .296

STRATUM: MISCELLANDCUS
TOTAL STEMS (IN 1000 UNIT) BY SFECTES AND DIANETER CLASSES (TN CM.)








$: 117:$

STRATUM: SAMBOO
TOTAL STEMS ( IN OOO UWIT ) BY SPECIES AND DIAMETER GLASSESS (IM CM.)


| $\widehat{80-69}$ 90-99 100-109 110-119 120+ TOTAL |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | 6.256 | $\cdots$ | - | - | 50.046 |
| - | - | - | - | - | 181.417 |
| - | - | $=$ | - | - | 12.512 |
| - | - | - | - | - | 25.023 |
| - | - | - | - | - | 56.302 |
| - | - | - | - | - | 6.256 |
| - | - | - | - | - | 43.790 |
| - | - | - | - | - | 75.069 |
| - | - | - | - | - | 6.256 |
| 7 | $\square$ | - | - | - | 18.767 |
| $\stackrel{ }{-}$ | $=$ | - | - | - | 100.092 |
| - | $\cdots$ | - | - | $=$ | 12.512 |
| $\square$ | - | * | - | $\rightarrow$ | 6.256 |
| - | - | - | - | = | 6.256 |
| $=$ | - | - | - | - | 12. 512 |
| - | - | - | $\rightarrow$ | $=$ | 18.767 |
| - | - | - | $\rightarrow$ | - | 12. 512 |
| - | - | - | - | - | 175.161 |
| - | - | - | - | - | 12.512 |
| - | - | 7 | - | - | 6.256 |
| - | - | $=$ | - | - | 6.256 |


| ORA | 251 | 18767 | = | 12.512 | 6.256 | 6.256 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYSOXYLIM |  |  |  |  |  |  |
| BIn ECTARIFORU4 | 252 | 137,627 | 31.279 | 6.256 | 6.256 | - |
| EMBLICA OFFICI"Alls | 267 | 12.512 | - | - | - | - |
| EIGELHARDILA | 270 | 12. 512 | - | 6.256 | 6.256 | - |
| SPICATA |  |  |  |  |  |  |
| EUGLWEA CYMOSA | 284 | 25.023 | 18.767 | 6.256 | - | 6.256 |
| EUGIrIA SPECIES | 289 | - | 6.256 | - | 7 | . |
| FICUS BENGALENSI | 3302 | 43.790 | $\pm$ | - | - | - |
| FICUS SPECIES | 308 | 62.558 | - | - | 12. 512 | - |
| GARCIvIA SPECIES | 316 | - . | - | 6.256 | - | - |
| GARUGA PImivATA | 319 | 6.256 | 12.512 | - | - | = |
| gMElina ARBOREA | 327 | 37.535 | 18.767 | 25.023 | 18.767 | - |
| GRENIA TIEIANE- FOLIA | 336 | - | - | 12.512 | - | - |
| GYROCARPUS | 342 | - | - | - | 6.256 | - |
| ODERATIA |  |  |  |  |  |  |
| HYDTOCARPUS | 366 | 6.256 | - | - | - | $=$ |
| AMPInA |  |  |  |  |  |  |
| IXORA CAUYCINA | 380 | 12.512 | - | - | - | $\pm$ |
| EAYEA FLORIBUIVDA | 386 | 6.256 | 12.512 | - | - | - |
| KYDIA CA山YCIvA | 393 | 12.512 | - | - | - | - |
| LAGERSTROBMIA | 397 | 106.348 | 56.302 | 12*512 | - | - |
| PARVIFLORA |  |  |  |  |  |  |
| LAGERSTROEMIA | 398 | 12. 512 | - | - | - | - |
| SPACIOSA |  |  |  |  |  |  |
| LANNEA COROMAN- | 400 | - | - | 6.256 | - | - |
| DELICA |  |  |  |  |  |  |
| LITSAEA MOWOPETAL | Ai15 | - | 6.256 | - | - | - |



| $: 121:$ <br>  SPECIES NME <br> CODE <br> DIAMETER |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STERCULTA VILUOSA | 649 | 37. 535 | 6.256 | - | - | - | $=$ | = | - |  | - |  |  | 43.790 |
| STERCULIA SPECIES | 650 | 6.256 | 18.767 | 12.512 |  | - | - | - | - |  | - |  |  | 43.790 38.535 |
| STEREOSPERMUM PERSONATUM | 652 | 12.512 | 6.256 | - | 12.512 | - | 6.256 | 6.256 | - |  | - |  | - | 43.790 |
| SYMPLOCOIS CRATAEGOIDES | 662 | 6.256 | - | - | 12.512 | - | 0.256 | \%. | - |  | - |  |  | 43.790 6.256 |
| SYZYGIUM CUMINII | 665 | 106.348 | 25.023 | 6-256 | - | - | $=$ | - | - |  | - |  | $\cdots$ | 137.627 |
| SYZYGIUM SPECIES | 668 | 12.512 | - |  | - | $\pm$ | - | - | - |  | - |  | $\square$ | 12.512 |
| TECTONA GRANDIS | 673 | 25.023 | 6.256 | - | - | $=$ | - | - | - |  | - |  | - | 12.512 |
| TERMINALIA CHEBULA | 679 | 6.256 | 12. 512 | 6.256 | - | - | $\cdots$ | - | - |  | - |  | - | 25.023 |
| TERUINALTA CITRANA | 680 | - | 12 |  | 6.256 | - | - | - | - |  | 6.256 |  | - | 12.512 |
| TETRAMELES NJDIFLORA | . 688 | - | - | 12. 512 | 6.256 | 6.256 | 6.256 | 6.256 | - |  | . 25 |  | - | 37.535 |
| TRENIA NUDIFLORA | 695 | 6.256 | 6.256 | - | . 2 | . 25 |  | . 25 | - |  | - |  |  | 12.512 |
| VI TEX PENDUCULARIS | 713 | 6.256 |  | 6.256 | - | 6.256 | - |  | - |  | - |  | - | 18.767 |
| ZANTHOXYLUM BUORUNGA | 730 | 6.256 | 6.256 | . | - | . | - | - | - |  | - |  |  | 12.512 |
| ZANTHOXYLUM ALATUM | 731 | - | - | - | - | - | - | - | - | - | - | - | 6.256 | 6.2561526.407 |
| UNIDENTIFIED TREES | 9241188.595181.417100.092 |  |  |  | 31.279 | 18.767 | 6.256 | $\rightarrow$ | - | - | - |  |  |  |





- $124:$

:126:





DISTRICT: CACHAR:




## Contents

## Contents

: 135:
DISTRIBUTION OF NO. OF CULMS/TM, RY AGS AND SOUNDNESS (M1sc. Stratum)

$: 136:$
TABLE NO. 5.2.
DISTRIRURION OF NO, OF CTLMS/FLA. BY ACE AND SOUNDNESS - BAMROO STPATOM

$: 137:$
TARLE NO. 6.1.
BAMBOO DRY KETSHT/W.A TN TONNES - MJSC. STRATTM


BAMBOO ERY WEIGHT/H.A. TN TONNES - RANROO STRATUM



## Contents



OETTAILS OF PLOT



STRATIFICATION OF RECORDED FOREST




[^0]:    

[^1]:     -
    $\qquad$

