GOVERNMENT OF INDIA MINISTRY OF ENVIRONMENT AND FORESTS

REPORT
 ON

INVENTORY OF FOREST RESOURCES
OF MYSORE DISTRICT
(KARNATAKA)

FOREST SURVEY OF INDIA SOUTHERN ZONE
 BANGALORE

1995

```
（For official use only）
```

GDNERMMENT DF INDIA MIMIGTRY DF EMVIRDNMENT AND FロRESTS

REPロRT
ロッ
INVENTDRY DF FDREST RESDNRCES BF MYSロRE DISTRICT
CHARNATAHA？

i

PREFACE

The inventory of forest resourses of Mysore District was taken up during 1971-.73 by the Forest Survey of India, Southern Zone, Bangalore. The report highlights the details regarding area inventoried, methodology adopted, processing of the data and findings with regard to the forest resources of the district.

The net forest area of Mysore District is 3, 730,595 . Em, m. out of which tree forest area is 3, 498.06 5月.kms. Of the net forest area, 65.85% is coyered witt dense and moderately dense forest and 687.48 squms. is having open forest. To the extent of 95.09% of the erof composition is miscellaneous. The forest of the district has good representation of all the size classes containing 36.71% pole crop, 24.28% small timber. 10.4% big timber, 17.7 (\% mixed size class and 10.69% is regeneration crop. Regeneration is imadequate. The total number of stems of all the species in the forest area is about 5B. 22 millions which works out to an average of 166.45 stems/tia. The total standing volume in the tree forest area is about 18.86 million cutic metres, which works out to be 53.92 cutic metres per hectare. The growing stock is dominated by three species namély Anogeissus latifolia (17.3\%), Tectona grandis (13.47\%) and Termimalia crenulata (12.11\%). The bamboo forest of the district has the potential of producing 30,370 tonnes of bamboo each year. A large portion of bamboo stock (about 28.9\%) cansists of partialm ly dry and damaged culms underlyning the need for more intensive management of bamboo.

The inventory work was carried out by the field staff of the forest Sürvey of India, Southern Zone, Bangalore under the supervision of Shri M. Muni Reddy, Joint Director, and Shri Devendra Kumar, Deputy Director, The field parties were led by Shri K. S. Reddy, Jr. Technical Assistant, Shri G.5. Trivedi, Jr. Technical Assistant and Shri S_{n} Sampath, Jr. Technical Assistant and the data processing was done by Shiri Madugani Dmpratiash Sr. Technical Assistant and Shri S. Sampath; Jr. Technical Assistant in $P C$ AT 286 using the software developed by southern zone, Bangalore. The cooperation and help rendered by the Karnataka forest Department at every stage is highly appreciated and thankifully acknowledged.

It is hoped that the report will be useful for foresters in planning developmental programes in forestry sector at different levels.
Page No.
SUMMARY 1
CHAPTER-I BACKGROUND INFORMATION
1.1 Location 3
1.2 Physical Features 4
1.3 Forests 5
1.4 Climate © Rainfall 7
1.5 Area \& Population 8
1.7 Dther Socio-Economic conditions 9
CHAPTER-II DESIGN \& METHODDLOGY OF THE SURVEY
2.1 Forest Area Defined 11
2.2 Sampling Design 12
2. 3 Methodology 12
2.4 Intensity of the survey 16
2.5 Difficultíes envisaged during the field work 16
2.6 Plot status 17
CHAPTER-III DATA PRDCESSING
3.0 Preparation of data for processing in computer 18
3.1 Area computation 18
3.2 Volume Estimation 18
3.3 Enumerated tree volume and plot volume 20
3.4 Stand Table 21
3.5 Stock: Table 21
3.6 Standard Errors 21
3.7 BAMBOD
3.7.1 Area23
3.7.2 Clumps per hectare 23
3.7 .3 Culms per Clump 23
3.7.4 Culms per hectare 23
3.7.5 Total number of Culms 24
3.7.6 Bamboo stock 24
3.7.7 Dry weight equivalent of Bamboo Stock 25
CHAPTER-IV RESUL..TS DF THE INUENTORY
4.1 Land use pattern 26
4.2 Legal Status 32
4.4 Topography of the forest area 32
4.5 Rocl:iness 33
4.6 STATE OF SDIL
4.6.1 Soil Depth 34
4.6.2 Soil Texture 35
4.6.3 Soil Consistency 35
4.6.4 Humus 36
4.6.5 Erosjon Status 37
4.6.6 Coarse Framents 37
4.7 Accessibility of the area 38
4. \quad Origin of the Stand 39
4.9 Crop Composition 40
4.10 Canopy Layer 40
4.11 Size Class 41
4.12 Top Height 42
4. 13 Regeneration Status 43
4.14 Injuries to crop 45
4. 15 Fire Incidence 45
4.16 Grazing Incidence 46
4.17 Presence of Weeds 47
4.18 Presence of Grass 48
4.19 Plantation Potential 48
4.20 State of Forest (Degradation) 49
4.21 OCCURRENCE OF EAMEOD
4.21.1 Bamboo Density 51
4.21.2 Eamboo Quality 51
4.21.3 Eamboo Flowering 53
4.21.4 Bamboo Regeneration 53
4.22 GROWING STOCK
4.22. 1 Growing Stand (Stem)
54
4.22.2 Growing Stock (Volume) 59
4.22.3 Growing Stock (Bamboo) 64
4.23 Standard Error 67

LIST OF TAELES

TABLE ND. 1. Land Use 26
2. Net Forest Area 27
3. Tree Forested Area 29
4. Division wise Net Forest Area 29
5. Division wise Wooded Area 31
6. Leyal Status 32
7. General Topography 33
8. Rockiness 33
7. Soil Depth 34
10. Soil Texture 35
11. Soil Consistency 35
12. Humus 36
13. Soil Erosion 37
14. Coarse Framments 38
15. Accessibility (Distance to Road) 38
16. Drigin of Stand 39
17. Crop Composition 40
18. Canopy Layer/Storey 41
19. Size Classes 42
20. Top Height 43
21. Intensity of Regeneration 44
22. Injuries to Crof 45
23. Fire Incidence 46
24. Grazing Incidence 46
25. Presence of Weeds 47
26. Presence of Grass 48
27. Plantation Potential 49
28. Degradation (Due to Human Factors) 50
29. Degradatiori (Due to Natural Calamities) 50
30. Eamboo Density 51
31. Bamboo Quality 52
32. Bamboo Flowerimg 53
33. Bamboo Regeneration 53
34. Growing Stand (Stem) -- Stratum wise 54
35. Growirig Stand (Stem) - Species wise 55
36. Growing Stand (Stem) - Division wise 56
37. Growing Stand of Teak Forest 57
38. Growing Stand of Bamboo Forest 58
39. Growing Stand of Miscellaneous Forest 58
40. Growing Stock (Volume) - Stratum wise 59
41. Growing Stock: (Volume) - Division wise 60
42. Growing Stock (Volume) - Species wise 61
43. Growing Stock of Teak: Forest 62
44. Growing Stock of Bamboo Forest 63
45. Growing Stock of Miscellaneous Forest 64
46. Bamboo Area (Quality \& Species wise) 65
47. Average Height, Green \& Air Dry Weight of Bamboo 66
48. Standard Error \% - Legal Status wise 67
49. Standard Error \% - Stratum wise 68
50. Standard Error \% - Forest Division wise 68
51. Standard Error \% for Bamboo estimates 69

LIST OF MAPS

MAP	1.	National Map showing the Inventoried area	2-3
	2.	State Map showing the Inventoried area	3-4
	3.	Map showing Soil Depth classes	34-35
	4.	Map showing Soil Erosion classes	37-38
	5.	Map showing Crop Composition classes	40-41
	6.	Map showing Grazing Incidence classes	46-47
	7.	Map showing Eamboo Quality Classes	52-53

PART-II

ANNEXURES

I	Growing	Stand	per hec. of Mysore District
II	Growing	Stand	of Mysore District
III	Growing	Stand	per her. of Teak Forest
IV	Growing	Stand	of Teak Forest
v	Growing	Stand	per hec. of Bamboo Forest
UI	Growing	Stand	of Eamboo Forest
UII	Growing	Stand	per hec, of Miscellaneous Forest
VIII	Growing	Stand	of Miscellaneous Forest
IX	Growing	Stand	per hef. of Hunsur Division
X	Growing	Stand	of Hunsur Division
XI	Growing	Stand	per hec. of Mysore Division
XII	Growing	Stand	of Mysore Division
XIII	Growing	Stand	per hec. of Chamarajnagara Division
XIV	Growing	Stand	of Chamarajnagara Division
$X V$	Growing	Stand	per hec. of Kollegal Division
$X \cup I$	Growing	Stand	of Kollegal Division
XVII	Growing	Stand	Per hec. of Bandipur Tiger Projest Area

Xeitic	Growing Stand of Bandipur Tiger Project Area
$X I X$	Growing Stock per hec. of Mysore District
$X X$	Growing Stock of Mysore District
XXI	Growing Stock: per hec. of Teak: Forest
XXII	Growing Stock of Teak Forest
XXIII	Growing Stock per hec. of Eamboo Forest
XXIV	Growing Stock of Bamboo Forest
XXV	Growing Stock per hec. of Miscellaneous Forest
$X X \cup I$	Growing Stock of Miscellaneous Forest
XXVII	Growing Stock per hece of Hunsur Division
XXVIII	Growing Stock of Hunsur Division
XXIX	Growing Stock per hec. of Mysore Division
$X X X$	Growing Stock of Mysore Division
$X X X I$	Growing Stock per hec: of Chamarajnagara Division
XXXII	Growing Stock of Chamarajnagara Division
XXXIIII	Growing Stock per hec. of Kollegal Division
XXXIV	Growing Stock of Kollegal Division
XXXV	Growing Stock per hec. of Bandipur Tiger Project Area
$X X X \cup I$	Growing Stock of Eandipur Tiger Project Area
XXXVII	Mean No. of Bamboo Clumps/hec. by Quality \& Clump Size
XXXVII	Mean No. of Eamboo Culms/Clump by Quality \& Soundmess
XXXIX	Mean No. of Eamboo Culms/hec. by Quality \& Soundness
XL	Total No. of Bamboo Culms by Quality \& Soundness
XLI	Mean No. of Eamboo Culms/Clump by Quality \& Age
XLII	Mean No. of Eamboo Culms/hec. by Guality \& Ape
XLIII	Total No. of Bamboo Culms ty Quality \& Ape
XLIV	Eamboo Stock:
XLV	Dry Weight Equivalent of Eamboo Stoct:

APPENDIX

SUMMARY

This refort deals with the inventory of forest resources of Mysore District carried out by Forest Survey of India, Gouthern .Zone, Bangalore from 1991 to 1993.

It includes the details of the area inventoried, methodology of data collection and its processing and analysis of the results. The salient features of the survey can be summarised below:
a)

Net forest area is 3730.59 km and tree forest area is 3498.06 kme 65.85% of the net forest area is covered with dense and moderately dense forest. 798.69 kmen area is having dense tree forest and 1658.04 kme. is containing moderately dense tree forests. 687.48 kme. area is having open forest.
b) The forest has been categorised into three strata, namely Teak, Bamboo and Miscellaneous and the latter forms 95.09% of the crop composition.
61.26% of the area is having medium to deep soil and 38.73% of the area is covered with shallow to very shallow soil.
d) 45% of the area is devoid of humus layer.
e) 95.09% of the area containing natural forest of seed origin. 4.62\% of area is covered with man made forest.
f) The tree forest has good representation of all the size classes. It contains 36.71% pole crop, 24.28% small timber. 10.40% big timber, 17. 92% mixed size class and 10.69% regeneration crop.
9) Regeneration is absent in 20.52% of the area and is inadequate in 63.58% of the arean

1) The total number of stems of all species in tree forest area is $5,82,23,490$ which works out to an average of 166.45 stems/ha.
i) The total standing volume in the tree forest area is $1,88,60,869$ ma which works out to be $53.920 \mathrm{~m}^{3} /$ ha. About 43% of the growing stock is comfrised of three species namely Anogeissus latifolia (17.3%), Tectona grandis (13.47%) and Terminalia crenulata (12. 11\%).
j) The total green bamboo stock in the district is 1,37,844 tonnes. The average green bamboo stock works out to 1.39 tonnes per hectare.
k) The bamboo forest in the district have a potential of producing 30,370 tonnes every year.
2)

A large portion of green bamboo stock (about 28.9%) consists of dry and damaged culms, underlining the need for more intensive management of tamboo growing stock.

CHAPTER - I

BACK GROUND INFORMATION

1.0 The evaluation of forest resources both qualitatively and quantitatively is the essence of the forest inventory. The main objective of the forest inventory work is to collect qualitative and quantitative information on forest resources within optimum precision limits so that the data are useful in State and National level planning. The inventory taken $u p$ by the Forest Survey of India comes under the category of National Forest Inventories which require general estimate of all the elements of a forest inventory including the charasteristics of the trees, land on which they grow, estimation of growimg stock and estimate of growth and drain. All these details are necessary for effective resource management of our forest wealth.

The inventory of the forest of Mysore District was undertaken by the Forest Survey of India, Southern Zone, Bangalore during the year 1971-1793. The field work was started in December, 1991 and was completed in March, 1793. The design followed in the survey is Systematic Cluster Sampling selected in a random manner.

LOCATION:

The survey area consists of entire Mysore district lying between $11^{\circ} 30^{\prime}$ and $12^{\circ} 50^{\prime}$ North latitudes and $75^{\circ} 45^{\prime}$ and $77^{\circ} 45^{\prime}$ East longitudes. It is situated in the Southern part of Decan Peninsula and forms the Southern most part of the Karnataka State. It consists of 11 Taluks and

MAP OF KARNATAKA

SHOWING FOREST INVENTORIED AREA

ANDHRA.

ARABIAN SEA

Slate boundary
DIEfriet boundary
obrtriet He.

INVENTORIED AREA \square
Omangalore PRADESH

5 Forest Divisions mamely Mysore, Kollegal, Chamıajnagar and Hunsur (fart) and Bandipur Tiger Project area. It is bounded on the North by

Hassan and Mandya Districts, on South by Cannanore District of Kerala State and Udhagamandalam (Nilgiri) District of Tamilnadu, on the East by Salem and Coimbatore District of Tamilandu and the west by Kodagu district of Karnataka.

1.2 PHYSICAL FEATURES:

Physiographically the region in which the district is situated may be classified as partly maidan and partly semimalnad. The ground is generally undulating and the land of the district forms an undulating table land with granite rocks protruding at odd intervals. The primeipal range of hills are the Eiligirirangana betta in Yelandur Taluk and the Male Mahadhestiwar hill in Kollegal Taluk; the former rising to a height of 5090 feet (1697 mietres) ahove the sea level.

The extreme South forms a terrain of dense forests and the major portion of the land here is uniformly covered by red loamy soil. The Western Taluks are bounded by the lofty mountain ranges of the western Ghats. The main forest area are located in the Southern and SouthWestern Taluks of Kollegal, Yelandur, Chamrajnagar, Gundulpet and Heggadadevan Kote, Periyapatna and Hunsur.

The drainaye is towards East and comprises mainly the Cauvery river basin besides those of Kabini, Lakshmanthirtha and Suvarna Kote which are tributaries of Cauvery.

The Mysore District is endowed with rich wild life which is very clear from the fact that it supforts two National Parks i.e. Nagarahole and

Bandipur Tiger Reserve and Six Sanctuaries viz. Cauvery Wildife Sanctuary, B.R.T. Hills Sanctuary, Ranganetfitoo Sanctuary, Nugu Wildife Sanctuary and Aravithittu Sanctuary. The total extent of area under these National Parks \& Sanctuaries are approximately 2250 square kilometres.
. The major fauna that is abundant in the National Parks and Sanctuaries are Elephants, Bisons. Tigers and Panthers. Apart from this Ranganathitoo Bird Sanctuary attracts huge number of rare bird species and becomes an major attraction for the tourists coming to Mysore.

1.3 FORESTS:

The forests of the district is mixed and fall under the broad classification of South Indian Tropical Forest of Deciduous types. Evergreen type is also noticed in the Eastern portion of the District. As per Champion \& Seth's classification, the forest of the district falls under the following categories of forest types.

```
1. Southern Tropical Evergreen Forests ( \(1 \mathrm{~A} / \mathrm{C}_{3}\) ).
2. South Indian Tropical Moist Deciduous Forests(3B/Ce).
3. Southern Tropical Dry Deciduous Forests (5A/Ce).
4. The Scrub Forest (5B/DS \({ }_{\mu}\) - Dry Deciduous Scrut Champion \& Seth).
```

The higher elevation of Kollegal Range near Bellaje are charatterised by the existence of Evergreen Type of Forests. The forests mainly oceur in the valleys of these high hills and are surrounded by grass lands forming almost the 'shola' type of vegetation. The species commonly met are- Artocarpus hirsuta, Artocarpus integrifolia, Bischofia
javanice, Canarium strictum, Cinnamomum species, Aglaia roxhurghiana,

Elaeodendron glaucum. Evodia roxburghiana, Garuga pinnata, Lingustrum Species, Mecaranga roxburghiig Litsea lingustrina, Mangifera indica, Machilus macrantha, Mesua ferrae, Michelia champaca, Nephelium longana, Odina wodier, Qlea glandulifera, Palaguium ellipticum, Polyalthia species and Vitex altissima.

Moist deciduous forest is common in Western and Southern region of the district. The forests towards the western side aremore moist and are typical of the moist typen The chief species that are found are Tectona grandis, Dalbergia latifolia, Lagerstroemia lanceolata, Ierminalia tomentosa, Pterocarpus marsupium, Anogeissus latifolia, Grewia latifolia, Terminalia paniculata, Mangifera indica, Cassia fistula, Altizzia lebbet, Altizzia odoratissima, Shorea taluran

Both types of common bamboo viz. Bambusa arundinacea and Dendrocalamus strictus occur as under storey.

The common undergrowth is characterised by the presence of Helicteres isora, Lantana camera and Pterolobium indicum, Euptiatorium species.

Dry Deciduous type is characterised by foor site quality with shallow hard soil, relatively low rainfall and stunted growth of trees with open canopy. A fair good proportion of the total forest areas of the Mysore District falls in this type only. Main species found under this type are - Santalum album, Tectona grandis, Anogeissus latifolia, Pterocarpus marsupium, Dalbergia latifolia, Grewia tiliaefolia, Altizaia lebbek: Albizzia amara, Acacia leucoptioea, Acacia sundra, Dalbergia

Raniculata, Terminalia belerica, Schleichera gleosa, Shorea talura, Hardwickia binata, Chloroxylon swietenia, Gyrocarpous species, Bauhinia racemosa, Diospyros montana, Diospyros melanoxylon, Zyzyphus Eylopyra.

Thorny scrub type exists in the low lying areas of the hills on the Kollegal plateau, Heggadadevana Kote, Punjus and Chamrajnagar and Hunsur Range. It is associated with poor rainfall and impoverished soil devoid of humus. Good size trees are very few and occasionally found. The trees have very poor growth and are bushy in nature due to heavy grazing, browsing, repeated fires and indiscriminate cutting by men. The vegetation comprises of species like Shorea talura, Santalum album, Terminalia shebula, Anogeissus latifolia, Azadiractita indica, Albizzia lebbek, Chloroxylon swietenia, Acacia leucophloea, Acacia catechu, Acacia sundra, Steriospermum chelenoides, Boswellia serrata, Diospyros melanowy= lon, Dalbergia paniculata, Dalbergia latifolia, Dendrocalams strictus, Pterocarpus marsupium, Terminalia belerica, Zyzyphus Eylopyra.

1.4 CLIMATE \& RAINFALL:

The climate of the district is moderate throughout the year.
The temperature from November to February ranges from $16.7^{\circ} \mathrm{C}$ to $31.3^{\circ} \mathrm{C}$ while that in Summer (March to April.) ranges from $19.7^{\circ} \mathrm{C}$ to $35.1^{\circ} \mathrm{C}$. The Rainy Season is from June to October: There is extreme variation in the rainfall from locality to locality. The average rainfall varies from 1200 mim. in the Western region to 690 mm . in the Eastern region. The average rainfall for the whole district comes to 900 mm . approximately. The portion of Chamrajnagar and Kollegal Division receives rainfall both from South West monsoon and North East Monsoon. The South West monsoon precipitation is heavy and continuous and North East monsoon is lighter and intermittent in the areas of Kakanakote, Begur and Aini Marigudi Ranges in Chamajnagar Forest Division. In Kollegal Forest Divisioin

South West Monsoon does not precipitate considerably.

1.5 AREA \& POPULATION:

As per 1991 Census the total area of the district is 11954 sq.kma with a total population of 31,65018 . 70.3% of the inhabitants of the district live in rural areas. It has density of popoulation of 265 per sq.km. It has decennial growth rate of population as 21.57%, Sek ratio 953 (Rural 958, Urban 943). literacy 40%. The proportion of main workers to total population is 37.44% out of which 33.74% are cultivators, 27.89% are agricultural labourers, 2.82% are workers in household industry and 31.55% are other worteers.
1.6 LAND USE PATTERN:

The following table shows the land use pattern in Mysore District:

9.No.	Land use	Area in \% of total kme. land use.	
1.	Geographical area (accerding to village papers).	12,460	100\%
2.	Forest area	3,380	27\%
	LAND NOT AVAILABLE FOR CULTIVATION		
3.	Land fut to non agricultural uses	860	7\%
4.	Barren and uncultivable land	670	5\%
	OTHER UNCULTIVATED LAND EXCLUDING FALLOW LAND.		
5.	Permanent pasture and other grazing lands.	920	7\%
6.	Land under miscellaneous free crops and groves not included in the net area.	110	1\%
7.	Cultivable waste	340	3\%
8.	Fallow lands	1,370	11\%
9.	Net area sown	4,810	39\%
	Total	12,460	100\%

[^0]
1.7 OTHER SOCIO- ECONOMIC CONDITIONS:

The per capita land availability for cultivation in this district is 0.49 ha. Majority of the land holdings fall under small (1-2 ha.) and marginal (below 1 ha.) categories.

Rice and Ragi are the most important foodmyrains produced in the district. It ranks thirdamong rice producing districts of the gtate. It accounted for 10.3% of the total rice out put in the State and 10.9% of Ragi production of the State during 1991-92.

This district is known for mulberry cultivation and production of silk, Mysore silk sarees is famous item of production. Silk weaving factory is also located in the district. There are practically no mineral based industries in the district. However, the M.M.Hills in Kollegal Taluka is famous for Black Granite of export quality. The Government Company, Mysore Minerals are extracting granites from this locality apart from private enterfreneuers. The district is cent fercent electrified. As per 1991 Census, 40% of the population of the district is literate, $(30.2 \%$ of the rural people and 63.5% of the urban feople comes under literate category).

The district being the thirdrishest district in the forest wealth in the State, the forest provides raw material for industries like paper. rayon, sawmills, safety matches, sandal wood oil and agarbatti factories located in and around the district.

CHAPTER - II
 DESIGN \& METHODOLQGY OF THE SURVEY

2.0 The toposheets prepared by Survey of India is tatien as base map for carrying out inventory work. The scale of the map used was 1:50,000. In these maps the extent of forest areas was shown in green colour. The
 intervals which forms our basic sampling units. Data was collected from the two plots of 0.1 ha. falling in each grid only in forest areas.. Thus, the sampling design adopted was a CLUSTER SAMPLING, in which grids have been taken as cluster. Actually the sampling design was cluster sampling of unequal size because of the fact that in many grids only one plot was laid out.
2. 1 FQREST AREA DEF INED:

The following categories of lands were treated as FOREST AREA for the purpose of the forest inventory:
i) All those areas shown in green wast on Survey of India toposheets.
ii) All such areas in which words such as thick jungle, thick: forest, dense jungle, open forest with bamboo etce are mentioned.
iii) All those areas indicated by dotted line or spotted line or a pillar line as FDREST AREA.

After dividing the toposheet of $1: 50,000$ scale into 36 grids of 21/2' x E1/2' each; the length ' x ' and width ' Y ' of each grid
was measaured to the smallest convenient scale. The length (d) of the side of the plot on the map corresponding to 0.1 ha, of square plot in the ground was calculated. After substracting the side `d" from length and width of the $\mathrm{g}^{\prime} \mathrm{id}$, the number $X^{\prime}=(X-d)$ and Y ($=(Y-d)$ was obtained. From the random table, two numbers in the range of 0 to X^{\prime} and 0 to Y were selected. Let it be P_{1} and Pa_{z}. To these numbers half of the plot side (d/2) was added to get x and y comordinates of the first plot centre considering left hand bottom ($S-W$) corners of the grid as the origin. To get the centre of the second plot in the same grid, the centre of the first plot was joined with grid centre and is extended in the opposite direction upto the distance equal to distance between the grid centre and the first plot centre. This point became the centre of the second plot.

Qualitative and quantitative data were collected from the sample plots falling in the forest areas only. The data regarding terrain, soil, tree canopy and bamboo etc, were collected. Qualitative data sauch as forest types were collected by obtaining 2 ha, area surrounding the plot centre.

2.3 METHODOLDGY:

The field data was collected by three field parties each headed

DIAGRAM -2
DIAGRAM SHOWING MARKING OF PLOT IN $2 / / 2^{\prime} \times 21 / 22^{\prime}$ GRID
' x ' a 'r' are the distances along ' x a a ' y ' AXES WITH SW CORNER AS THE ORIGN
$70^{\circ} 30^{\prime}$

DIAGRAM-I
DIAGRAM SHOWING IDENTIFICATION OF GRIDS ON I:50,000 OR 1:63,360 SCALE TOPOSHEETS
by Junior Technical Assistant who worked as Crew Leader. The crew leader was assisted by two fieldmen. The services of camp khalasai and unskilled labourers engaged locally on Muster Roll were also utilised. The crew leader was provided with camp equipments, a set of toposheets and
instruments used in survey wort such as silva compass, tilumeleiss hypsometer, caliper and measuring tape etc.

The camp locations were decided by the Crew Leaders based on the number of plots to be tackled from that locality. After selecting the plots to be surveyed on the day, the crew leader along with his crew members and the local forest staff proceeded to reference point located on tofosheet which could be identified on the ground. After reaching the reference point, the crew leader took the bearing of that reference point and measured the distance of the plot centre from that point on toposheet. The crew leader proceeded to the plot centre traversing the same distance in the same direction as indicated fromthe bearing of the reference point.

After reaching the plot centre, a square plot of 0.1 ha. with diagonal measuring 44.7E metres in NS-EW direction was laid on the ground. The required data was collected from the plot in the following prescribed forms. The sketch showing lay out of the plot on the ground is appended in the reportn
(i) PLOT APPRDACH FDRM:

This is filled by the Crew Leader when he starts from the canf to the sample plot and returns to the campe It is not used in dataprocessing. Only it is used in locating the plot during remsurvey iñfuture.

By observing 2 ha. around the plot centre, the qualitative data such as land use, tree crops composition and its density, erosion status, intensity of fire and grazing, regeneration status, bamboo data etc. are recorded.in the form.

(iii)

PLOT ENUMERATION FORM:

The trees and bamboo in 0.1 han plot are enumerated and recorded in the form. The trees with 10 cm. diameter and above at breast height over bark only are enumerated. The dead trees of having utility less than 70% are not enumerated. The diameter of a bamboo clump is measured at its base.
(iv) SAMPLE TREE FORM:

This is filled after filling the filot enumeration form. The data of trees with diameter 10 cm. and above at BHOB are collected from 1/4th. of the total plot, starting from N-W quadránt. For each sample tree, diameter at breast height, bark thickness, tree height, length of clear bole, form of tree etc. are recorded. Abstract of this information is written on the Sample Tree Card which is nailed to the respective tree. This facilitates the supervising officers for checking.

(v) BAMEOO ENUMERATION \& CLUMP ANALYYSIS FQRM:

- The data of individual culms occurring in the selected clumps are recorded in this form. The clumps bearing serial No. 1, 9, 17, 25, 33 etc. (first and every eighth clump thereafter) of each bamboo species
are selected for detailed analysis. The mumber of tamboo culms fer clumf classified on the tais of age, greenness and soundness are recorded.

(vi) BAMBOD ENUMERATION FORM (NOM clump forming):

In this form information is collected for non-clump forming bamboos ococurring in the sample plot. For the purpose of counting the culms only $1 / 8 \mathrm{th}$. area of the sample plot touching northern semidiagonal is taken. Counting is done in 1/E NW quadrfant only ine
in 0.0125 ha. Culmare classified on the basis of soundness, age and green-ness.

(vii) BAMBOD WEIGHT FORM:

For determining the correlation between green and dry weight of the utilizable length of bamboo culm, sample pieces of matured culms are cut and weighed at regular intervals of time tilla constant air dry weight is obtained. The green weight of utiliagble culms of different dia class ($2<5,548$ and 8 and above) and that of 30 cms. $10 n g$ pieces obtained in each from the top, middle and bottom fortions of the utilizable culms fromeder dia classes are recorded in this form.

This formis filled up for plots in which bamboo have been found in 2 ha. areas in and around the plot. Specimen of the above field forms have been given in Appendix.

A total of 391 sample plots were marked on the toposheets in the forest areas of Mysore District. The total entent of forest area depicted on the Survey of India toposheets was estimated by using the dot-grid method. The total forest area came to be about 3953.51 kmen Hence, area represented by each sample plot i.e. Area Weightage $=3953.51 / 391=$ $10.11 \mathrm{~km}^{\mathrm{E}}$.

Even though certain plots selected is shown as green wash area having forest cover in toposheet, it was seen after visiting the plots that about 2 ef plots were put under non forestry use. Dut of e2 flots, 20 points were under agriculture, one under barren lands and one under hatitation.

Thus the net forest area comes to (391-22) $\times 10.11=369 \times 10.11$ $=3730.59 \mathrm{~km}{ }^{2}$. The data pertaining to 369 plots were recorded. The intensity of survey has been calculated in the following manner:

1. Total extent of forest area sampled=3730.59kme $=373059$ ha.
2. Total area of the sample plots $=369 \times 0.1 \mathrm{ha}=36.9 \mathrm{ha}$.

$$
\text { Intensity of the survey }=\frac{36.9}{3,73.059} \quad \times 100=0.00989=0.01
$$

2.5 DIFFICULTIES ENVISAGED DURING THE FIELD WORK:

(a) Due to heavy infestation of wildelephants in groups, the field party was not in a position to tave an aceess to eight sample points.
(b) Forty five plots in Kollegal Taluk coiuld not be tackeld due to the sensitiveness of the area where Sandal Wood-Cum-Elephant Poacher Veerappan*s gang was in operation. The forest authorities as well as Special Task Force headed by Police Officers had advised not to enter to this area which being the core area for their activjities.

Thus, in ali 53 plots were extraploated with nearest sample point to get inventory result for the entire district.
(c) In thirteen plots our field parties could get access to the plot but could not reach upto the plot centre because of reasons mentioned in (a) and (b).
2.6 PLOT STATUS:

The details of the plot status are:
S.N. Plot Status
No. of Areain Percentage
plots. 5 squm.

1. Sample plot visited $325 \quad 3285.75 \quad 83.13$
2. Vicinity visited

13
131.43
3.32
3.

Extrapolated
53
535.83
13.55

CHAPTER -III

dATA PROCESSING

3.0
 PREPARATION DF DATA FOR PROCESSING IN COMPUTER:

The basic field inventory data recorded in the field forms were checked at Zonal office to detect any inconsistencies and the corractions were effected where-ever necessary. The checked data were entered into the PC AT 286 Computer for processing. A computer programme was developed to produce the desired out put. The output was tabulated in the desired format.

3
3.1 . AREA CDMPUTATION:

The extent of the forested area as depicted on the Survey of India toposheet was calculated in the Zonal Dffice with the help of a dot grid method. The area of forests under various categories such as forest type, soil erosion status, grazing incidence, fire incidence, canopy density classes etc. was calculated by multiplying the number of sample plots ococurring in that class by the area weight of each sample point.

3.2 VOLUME ESTIMATION:

Felled tree data were not collected for preparation of generalvolume tahle. Sample tree data were not sufficient to develop local volume equations. Therefore, volume equations developed by FAO during the Pre-
investment Survey of Forest Resources of Southern Zone in the year 196768 have been adopted for volume estimation.

For Teak, Boswellia serrata, Diospyros melanoxylon and rest of the species, volume equations developed for Adilabad (A.P.) area have been used.

For Santalum album and Hardwickia binnata, the formula developed for rest of the species in Mahboobnagar (A.P.) survey has been used.

The following are the volume equations used for different species:

1. Anogeissus latifolia

$$
v=0.289-2.653 D+11.771 D^{2} .
$$

2. Dalbergia latifolia

$$
v=0.296-2.829 D+12.207 D^{2} .
$$

3. Lagerstroemia lanceolata

$$
v=0.07-1.295 D+9.429 D^{2} .
$$

4. Pterocarpus marsupium

$$
v=0.07-1.295 D+9.429 D^{2} .
$$

5. Schleichera trijuga

$$
v=0.023613-0.531006 \mathrm{D}+6.731036 \mathrm{D}^{2} .
$$

6. Tectona grandis

$$
v=0.023613-0.531006 \mathrm{D}+6.731036 \mathrm{De} .
$$

7. Terminalia tomentosa/crenulata

$$
v=0.289-2.653 D+11.771 D^{2}
$$

8. Terminalia paniculata

$$
V=0.07-1.295 \mathrm{D}+9.429 \mathrm{D}^{2}
$$

9. Vitex altissima

$$
V=0.289-2.653 D+11.771 D^{2}
$$

10. Diospyros melano:ylon

$$
V=0.024814-0.578532 D+6.110170 \mathrm{D} 2
$$

11. Boswellia serrata

$$
V=-0.076369+0.710215 \mathrm{D}+0.497600 \mathrm{D}^{\mathrm{E}}+11.38700 \mathrm{D}^{3}
$$

12. Grewia tiliaefolia

$$
V=0.070-1.295 D+9.429 D^{\underline{2}}
$$

13. Santalum album

$$
V=0.058 \quad 4.598 D^{3}
$$

14. Hardwictia binnata

$$
V=0.058+4.598 D^{3}
$$

15. Rest of the species

$$
V=0.088183-1.490948 \mathrm{D}+8.984266 \mathrm{D}
$$

CWhere $D=$ Diameter at breast height in metre over bart:
$V=$ Volume (excluding bark) in mis)]

3.3 ENUMERATED TREE VOLUME AND PLOT VOLUME:

By feeding the data of diameter at breast height ouer bark of
each enumerated tree in the volume equation, the individual tree volume of that particular species in a plot was found. By simple summatioin the
total volume of all the trees in the plot is determined. By addin! the Filot volume of all the plots in each strata (forest type) and by dividing by the total number of filots so surveyed we arrived at the average volume per plot. By multiplying the average volume per plot by a factor of ten we got the volume per ha. in that strata. This data was stored in the treefplot volume file.

3.4 STAND TABLE:

The elements of the tree/plot volume file were utilized to classify the tree by species, diameter, crop composition etc. The estimates of the number of stems per ha. and total stems by sfecies, diameter classes were obtained for each crof compositioin and was given in computer outFut.

3.5 STOCK TABLES:

The estimates of volume per hectare and total volume by species and diameter classes were obtained for each crop composition fromi the tree/plot volume file and were given in computer output.

3.6 STANDARD ERRDRS :

In order to estimate the sampling error, the sample was considered of unequal size, since in many grids only one plot was enumerated. Therefore, ratio method of estimating sampling error has been used.

$$
\bar{x}=1 / \pi \cdot \sum_{1=1}^{n} x_{1}=\text { Average No of plots fer Grid }
$$

Estimate of Variance of R

$$
V(R)=\frac{1}{n(n-1) X_{X}^{2}} \sum_{1=1}^{n} Y_{1}^{a}-2 R \sum_{1=1}^{n} X_{1} Y_{1}+R_{i=1}^{n} \sum_{1=1}^{m}
$$

Estmate of the Standard Error (SE) of R

$$
S E=\sqrt{v(R)}
$$

$$
S E \%=\frac{S E}{-} * 100
$$

where

$$
\begin{aligned}
n= & \text { Total No of grids in the sample. } \\
Y_{\perp}= & \text { Sum of the per Hectare volume/ stemin the ith } \\
& \text { grid ine the sum of fer hec volume/stem of each } \\
& \text { plot in that gride(per hectare volume/stem is } \\
& \text { calculated by summing the vol/stem of each tree in } \\
& \text { a plot then multiplyingit by 10.) } \\
x_{\perp}= & \text { Number of plots in the ith grid. }
\end{aligned}
$$

Standard errors have been estimated, for the growing stock in

3.7 BAMBD日:
 3.7 .1
 AREA:

The occurrence of bamboo was examined in an area of about 2 ha. around the plot centre and its density and quality were recorded in the plot descriftion form. By applying the area weight of the plot, the area under bamboo was estimated. Area under each quality bamboo was also estimated from the number of plots falling in each quality.

3.7.2 CLUMPS PER HECTARE:

The bamboo clumps ococurring in each sample plot were enumerated by species and diameter of the clump. This information was utilized for assessing the number of clumps fer han by species and clump size class. Separate estimate for each species were obtained. To estimate the number of clumps fer han in each quality and clump size class, the data of plot description forms and plot enumeration forms were merged together.

3.7.3 CULMS PER CLUMP:

In every eighth clump starting with the first clump in a sample plot the number of culms by age and soundness was enumerated and record ed. The culms were further classified by culmediameter class. This information was used for estimating the number of culms per clump in different classes.
3.7.4 CULMS PER HECTARE:

The estimates of the number of clumps per ha. and the number of
culms per clump gives the number of culms per ha. under different classes of each species.

3.7.5 TOTAL NUMEER OF CULMS:

The estimates of the number of culms fer hectare and the extent of area under specific quality classes gives the total mumber of bamboo culms in the inventoried area.

3.7.6 BAMBDD STOCK:

Weight of the utilizatle length of green culms of diameter 2 to 5 cma 5 to $8 \mathrm{cmm}, 8$ [mi and above, were recorded by felling bamboo culms from the first clump in each plot. Average green weight of a culm was thus obtained in above diameter classes for each species. Only two species Bambusa arundinacea and Dendrocalamus strirtus were found in Mysore District.

The following correlation factors were used for various, categom ries of culms to find out green weight of the bamboo culms.

Dry Sound Culm = $1 / 2$ Green Sound Culman
Dry Damaged Culm $=1 / 4$ Green Sound Culm.
Green Damaged Culm $=1 / 2$ Green Sound Culm.
Decayed Culm = O.

Applying the above factors to the green weight of bamboo culms and the total number of culms, the total bamboo stock (green weight) was estimated.

3.7.7 DRY WEIGHT EQUIVALENT OF BAMBOO STOCK:

Green weight of all the three 30 cms. pieces obtained from the top, middle and basal parts of utilizable culm of each species was recorded to the mearest 5 gms. for different diameter classes. Air dry weight (after 90 days or when the air dry weight of samples became constant) of the corresponding three pieces of each diameter class was taken. Utilizing this, a factor for dry weight correlation was developed. Using this factor, green tonnage was converted into dry tonm nage.

CHAPTER -IV

RESULTS DF THE INVENTORY

```
4.0 The results of the inventory have been presented here.
4.1 LAND USE PATTERN:
```

Utilization of the forest land and their extent under various categories were estimated by the total number of sample plots falling in that category multiplied by area weightage.

The details of land use pattern in the Surveyed area of Mysore district can be summarized as follows:

Table No. 1

S.N.	La п d use	No. of plots.	Area in kme.	Parcentage
1	2	3	4	5
1.	Dense Tree Forests	77	778.67	20.20
2.	Moderately Dense Tree Forests.	164	1658.04	41:74
3.	Open Tree	68	687.48	17.37
4.	Scrub Forests	15	151.65	3.84
5.	Young crof of forestry	SFF.29	273.17	7.42
6.	Govt. grass lands	2	20.22	0.51
7.	Barren lands	2	20.22	0.51
8	Agri, land without tree in surrounding.	8	80.88	2.05

L.AND USE PATTERN

1	2	3	4	5
	,			
9.	Agri. land with tree in surrounding.	12	121.32	3.07
10.	Habitation	1	10.11	0.26
11.	Water Bodies	5	50.55	1.28
12.	Young Plantations	4	40.44	1.02
	TOTAL	391	3953.01	100.00

Out of 391 plots, 20 flots pertain to agri. lands, one plot each to habitation and barren land outside the R.F./P.F. boundary. Thus, the net forest area is represented by 369 plots equal to 3730.59 km 2. which is 94.37% of the area surveyed.

Net forest area is further classified into various categories which is given in the following Table (Table-2).

Tathe No. 2.

S.N.	Net Forest Area	No. of plots	Area in乡me.	Percentae
1.	Dense Tree Forests	79	798.69	21.41
2.	Moderately Dense Tree	164	1658.04	44.44
3.	Forests. Open Tree forests	68	687.48	18.43
4.	Scrub Forests	15	151.65	4.07

S.N.	Net Forest Area	No. of plots	Area in $K m^{2}$.	Percentae
5.	Bamboo trakes	2	20.22	0.54
6.	Young crop of forestry	5pp.29	293.17	7.86
7	Govt. Grass Lands	2	20.22	0.54
8.	Barren Lands	1	10.11	0.27
7.	Water Bodies	5	50.55	1.36
10.	Young Plantations	4	40.44	1.08
	Total	367	3730.59	100.00

From the above it is clear that the dense tree forest, moderately dense tree forest constitutes 65.85% of the total net forest area. Thus, 65.85% of the area is having crown density varying from 30% to 70% and above.

It is also observed that the scrut forest categories constitute about 4.07% of the net tree forest which are subjected to heavy biotic interference.

About 18. 43% of the net forest area falls under the category of open forest with crown density varying from 5% to 29%.

Qut of $3730.57 k m^{2}$ of met forest area, the tree forested areas constitute 3498.06 tme. the details are given in the following tatele.

$5 . N .$	Tree forested area	No. of plots.	$\begin{aligned} & \text { Area in } \\ & k m^{2} \end{aligned}$	Average
1.	Dense Tree forests	79	798.69	22.83
2.	Moderately Dense tree forests.	164	1658.04	47.40
3.	Dpen tree	68	687.48	19.65
4.	Bamboo brakes	2	20.22	0.58
5.	Young crop of forestry	$5 \text { PP. } 2 \overline{9}$	293.19	8.38
6.	Young plantations	4^{1}	40.44	1.16
	TOTAL :	346	3498.06	100.00

It is clear from the above table that -
i) the major tree forested area constitutes the moderately dense forest accounting to $47.4-\%$;
ii) 2e. 83% of the tree forest area constitutes dense tree forest having the crown density 70\% and above;
iii) majority of the young crop of forestry speries and young planta tion constituting 9.5% of the tree forest area are having teak: as a main speries.

The division-wise breal: up of net forest area and tree forest area (wooded area) is given in Table 4 \& 5.

Table No. 4

S.N.	Net forest area division wise.	No. of Plots	Area in $K m^{2}$.	Percentage
	HUNSUR			
1.	Dense tree forest	2	20.22	9.52
2	Moderately dense tree forests.	10	101.10	47.62
4.	Scrut forests	2	20.22	9.52
5.	Bamboo forests	2	20.22	9.52
6.	Barren lands	1	10.11	4.76
7.	Young plantations	1	10.11	4.76
	TOTAL	21		99.97

Mysore

1.	Dense tree forests.	16	161.76	40.00
2.	Moderately dense tree forests.	13	131.43	32.50
3.	Open tree forests	3	30.33	7.50
4.	Young crop of forestry	6	60.66	15.00
5.	species. Water Bodies.	2	20.22	5.00
	TOTAL	40		100.00
	CHAMRAJANAGARA			
1.	Dense tree forests	14	141.54	29.17
2.	Moderately dense tree forests.	13	131.43	27.08
3.	Open tree forests	7	70.77	4.58
4.	Scrub forests	2	20.22	4.17
5.	Young crop of forestry species.	10	101.10	20.83
6.	Young plantations.	2	20.22	4.17
-	TOTAL	48		100.00
	KOLLEGAL			
1.	Dense tree forests.	22	222.42	12.36
2.	Moderately dense tree forests.	94	950.34	52.81
3.	Open tree forests.	45	454.95	25.28
4.	Scrut forests	8	80.88	4.49
5.	Young crop of forestry species.	3	30.33	1.69
6.	Govt.Grass Lands.	2	20.22	1.12
7.	Water bodies.	3	30.33	1.69
8.	Young plantations	1	10.11	0.56
	TOTAL	178		100.00
	EANDIPUR TIGER PROJECT			
1.	Dense tree forests.	25	252.75	30.49
2	Moderately dense tree forests.	34	343.74	41.46
3.	Open tree forests	10	101.10	12.20
4.	Scrub forests.	3	30.33	3.66
5.	Young crop of forestry species.	10	101.10	12.20
	TOTAL	82		100.01
	GRAND TOTAL	369	3730.5	

Table No. 5.

S.N.	Forest Divisi.on (Wooded area)	No. of plots.	$\begin{aligned} & \text { Area in } \\ & k m^{m} \text {. } \end{aligned}$	Percentage
1.	HUNSUR	18	181.98	5.20
2.	MYSORE	38	384.18	10.98
3.	CHAMRAJANAGAR	46	465.06	13.29
4.	KOLLEGAL	165	1668.15	47.69
5.	Bandifur Tiger Project	79	798.69	22.83
	total	346	3498.06	99.99

4．2 LEGAL STATUS：

97.56% of the met forest area comprises of Reserve．Forest and National Park．Dnly 0.54% are Protected Forest and 1.90% are Unclassed Forests．

The treak up of the forest area as per legal status is given in the table－t．

Table No． 6

S．N．	Legal Status	No．of plots．	Area in トた π^{2} 。	Percentage
1.	Reserved Forests	243	2456．73	65.85
2.	Protected Forests	2	20．22	0.54
3.	Unclassed Forests	7	70.77	1.90
4.	National Park：	117	1182.87	31.71
	TOTAL	369	3730.59	100.00

4．3 The data regarding tarrain and soil are recordedfor the net forest area（excluding water bodies in forest area）whereas data such as crop composition，top height，size class，intensity of regeneration etc． are recorded for the plots falling in actual tree forest area．

4．4 TOPGGRAPHY DF THE FQREST AREA：

Majority of the forest area are found to be hilly and very hilly＂ 47.18% of the area comes under hilly category and 10.75% under
very hilly category. 39.29% of the area having gently rolling terrain and only 0.82% of the area is flat. The details of break up is given in the table-7.

Table No. 7

1.5 ROCKINESS:

The following table shows the status of rockiness in the forest area:

Table No. 8

S.No. Rockiness	No. of plots Area in kmen Percentage			
1.	High	2	20.22	0.55
2.	Medium	43	434.73	11.81
3.	Low	150	1516.50	41.21
4.	No rock:	169	1708.59	46.43

46.43\% of the area falls under the category of NO ROCK and 41.21% of the area is LOW ROCKY. It in'dicates that sufficient soil cover exists in the surveyed area which can support forest cover.
4.6 STATE DF SUIL:

Soil depth, texture, consistency, humus, erosion status and coarse fragments indicate the state of soil in the forest area.
4.6.1 SOIL DEPTH:
61.26% of the forest area is covered with medium and deep soil which indicates that it has potential to support deep rooted forest species.

Nearly 38.713% is covered with shallow and very shallow soil which can support shallow rooted species.

The details of areas covered under various soil depth categories are given in the following table:

Table No. 9
S.No. Soil depth

No. of plots Area in Fmき. Percentage -

1.	Very shalloow	22	222. 42	6.04
2.	Shallow	119	1203.07	32.67
3.	Medium	178	1797.58	48.90
4.	Deep	45	454.75	12.36
	TOTAL	363	680.04	97.97

4.6.2 SOIL TEXTURE:

The texture of soil found in the forest area shows the following pattern:

Table No. 10.

4.6.3 SOIL CONSISTENCY:

The fattern of soil consistency in the forest area is as follows:
\qquad
S.No. Soil consistency

No. of plots Area in kme. Percentage

Friahle	5	50.55	1.37	
2.	Slightly compact	297	3002.67	81.59
Compact	62	626.82	17.03	
		364	3680.04	97.97

Majority of the area comes under slight compact category with 81.59% followed by compenct soil type with 17.03%.
4.6.4 HUMUS:

Majority of the area are devoid of humus layer which is clear from the following table:

Tatle No. 12

S.No.	H ume us	No. of pilots	Area in kme.	Percentage
1.	Stal 10 w	131	1334.41	35.97
2.	Medium	59	596.49	16.21
3.	Deep	9	90.97	2.47
4.	No humus	165	1668.15	45.33
	TOTAL	364	3680.04	100.00

```
4.6.5 EROSION STATUS:
    Erosion status of the forest area is indicated by the following
table:
```

 Table No. 13
 | S.No. | Soil Erosion | No. of plots | Area in kme. | Percentage |
| :---: | :---: | :---: | :---: | :---: |
| 1. | Heavy | 16 | 161.76 | 4.40 |
| 2. | Moderate | 118 | 1192.98 | 32.42 |
| 3. | Mild | 157 | 1587.27 | 43.13 |
| 4. | No erosion | 73 | 738.03 | 20.05 |
| | TOTAL | 364 | 3680.04 | 100.00 |

It is seen that erosion occurring in the forest area is of mild (43.13%) and moderate type (32. 42%) and as sean that small percentage of the forest area (4.40\%) is heavily eroded. In 20.05% of the area there is no erosion.
4.6.6 COARSE FRAGMENTS:

Coarse fragments is absent in 44.51% of the forest arean State of coarse fragments is indicated in the following table:

Table No. 14
S.No. Coarse fragments

No. of plots Area in kme. Percentage

1. Loose stones	21	212.31	5.77	
2.	Gouldery	93	940.23	25.55
3. Gravely	88	889.68	24.51	
4. No coarse fragments	162	1637.82	44.51	

4.7 ACCESSIBILITY OF THE AREA:

94.23% of the area is having access to the road within 5 kms. from the forest. \quad Due to accessibility within 5 kms. working operation can be smoothly handled. The following table indicates the extent of the area covered under different accessibility zone.

Table No. 15

S.No.	Distance		Road	No. of plots	Area in $k \mathrm{~m}^{\mathbf{z}}$.	Percentage
1.	Distance	1	KM	165	1668. 15	45.33
2.	Distance	1	$\& 3 \mathrm{KM}$	132	1334.52.	36. 26
3.	Distance	3	$\& 5 \mathrm{kM}$	46	465.06	12.64
4.	Distance	5	$\& 7 \mathrm{KM}$	12	121.32	3.30
5.	Distance	7	$\& 10 \mathrm{kM}$	5	50.55	1.37

Table No. 16
S.No. Drigin of stnad No. of plots Areain kmen Peregntage

1.	Natural forest of seed origin.	329	3326.17	95.09
2.	Natural forest of coppice origin.	1	10.11	0.29
3.	Man-made forest	16	161.76	4.62
	TOTAL	346	3498.06	100.00

4.9 CROP COMPDSITION:

The break up of crop composition is given below:

Tatle No. 17

S.NO.	Crop composition	No. of plots	Area in km.	Percentage
1	Teak:	15	151.65	4.34
2.	Bamboo Forest	2	20.22	0.58
3.	Miscellaneous	329	3326.17	95.09
	TOTAL	34.6	3498.06	100.01

95.07\% of the forest cover is of miscellaneous type. In the miscellaneous type teak is present in good proportion. 4.34% of the area is teak forest in which Teak is more than 20% in the crop composition.

Pure bamboo forest is negligible although bamboo is one of the important species which is extracted in the Mysore district.
4.10 CANOPY LAYER:

The area covered under various categories of canopy layer is indicated in the following table:

Table No. 18
S.No. Canopy layer/storey No. of plots Area in kme. Percentage

1.	No storey	33	333.63		9.54
2.	One storeyed forest	125	1263.75		36.13
3.	Two storeyed forest	181	1829.91		52.31
4.	Three ar more storeyed	- 7	70.77	1	2.02
	TOTAL	346	3498.06		100.00

Majority of the rerop (52.31\%)is two storeyed crop. 9.54% of the arée is having young crof in which canopy formation has not taken place.

SIZE CLASS:

The trees in the sample plots were categorised according to their timber utility. The different size classes adopted in the present study depending upon predominance of diameter classes are as follows:

Diameter class

a. Regeneration
b. Polecrop
c. Small timber
d. Big timber
e. Mixed size class

10 cm.
10-20 cm.
20-30 cm.
30 cm. and above.
Tree crop with no marked domination of any size class.

The following table shows the crop of odifferent size classes and extent of areas represented by them.

Table No. 19
S.No. Sizeclass . No. of plots Areain kme. Percentage

1.	Regeneration	37	374.04	10.69
2.	Pole crop	127	1283.97	36.71
3.	Smalltimber	84	849.24	24.28
5.	Bigtimber	36	363.96	10.40
		62	626.82	17.92

It is seen that pole crof is occupying 36.71% while smảll timber occupies only $24.28,10.67 \%$ comes under the regeneration class.

4.12
 TOP HEIGHT:

The top height is arrived by taking the average height of dominant trees occurring in the plot or in the surrounding area of 2 ha.

The following table indicates the distribution of the crof area under different top rieight classes:
S.No: Top height

No. of plots Area in kme. Percentage

1. $0001-0005 \mathrm{M}$	20	202.20	5.78	
2.	$0006-0010 \mathrm{M}$	108	1091.88	31.21
3.	$0011-0015 \mathrm{M}$	114	1152.54	32.75
5.	$0016-0020 \mathrm{M}$	51	515.61	14.74
6.	$0021-0025 \mathrm{M}$	34	343.74	9.83
7.	18	181.98	5.20	
	$0026-0030 \mathrm{M}$	$1-0040 \mathrm{M}$	346	3498.06

It is seen from the above that forest is three storeyed in which lower storey ranges from ito 10 mm consisting of 37% of the crop, the midde storey ranging fromi 11 to 25 m m constitutimy 57.5% and the tof canopy ranging from 26 to $40 \mathrm{~m} . \operatorname{constituting~about~} 5.5 \%$ of the crop.

4. 13 REGENERATION STATUS:

Regeneration status for economically important sfecies was considered. Established regeneration of all sample trees (diameter of 2 to 10 cm. at breast height) in a plot of $4 \mathrm{M} \times 4 \mathrm{M}$ laid at the centre of the sample flot was counted. The different categories are -
S.N.

5 t atus
Regenération

1.	Adsquate	8 or more seedlings.
2.	Inadequate	Ufito 8 seedlings.
3.	Absent	No regeneration.

The following table shows the intensity of regeneration in the surveyed area:

Table No. 21

S.No. Intensity of regeneration No. of plots Area in kme. Percentage

1.	Adequate	42	424.62	12.14
2.	Inadequate	220	2224.20	63.58
3.	Absent	71	717.81	20.52
4.	Not recorded	13	131.43	3.76
	TOTAL	346	3498.06	100.00

It is seen that vast extent of forest area i.e. $34,10 \%$ of the area is either having inadequate regeneration or devoid of any regeneration. Only 12.14% of the forest area is having adequate regeneration.

The extent of forest area subjected to various kind of injuries is indicated below:

S.NO.	Injuries to crop	Non of plots	Area in kme.	Percentage
1.	Girdling and illicit felling.	115	1162.65	33.24
2.	Lopping for fodder	7	70.77	2.02
3.	Qther injuries	76	768.36	21.97
4.	No injury	148	1496.28	42.77
	TOTAL	346	3498.06	100.0

42.77% of the area is not subjected to any kind of injury* This may be due to the fact that such areas are falling under National Parks or Sanctuary where strict restrictions are being implemented. .
33.24% of the forest area is sutjected to girdling and illicit felling which amount to about $1 / 3$ of the forest area. In the categories of other injuries constituting 21.77% it may be due to wild life damages.
4.15 FIRE INCIDENCE:

The details of the forest covered under fire incidence are indicated below.

S.No. Fireincidence	No. of plots	Area in kme. Fercentage		
1.	Heavy	3	30.33	0.87
2.	Moderate	18	181.98	5.20
3.	Light	177	1789.47	51.16
4.	Nofire	148	1496.28	42.77
	TOTAL	496	3498.06	100.00

Major portion of the forest area comes under deciduous and moist deciduous type where fire occurrence is common. In most of the forest only ground fire takes place which amount to light in the nature. Such areas are accounting to 51.16%. In 42.77% of the area no fire incidence was noticed which may be due to strict regulations in National Parks and Sanctuaries forming bulk of area in the district.
4.16 GRAZING INCIDENCE:

The following table shows the grazing incidence in the forest area.

Tatle No. 24
S.No. Grazing incidence No of plots Area in kme. Percentage

| 1. Heavy | 61 | 616.71 | 17.63 |
| :--- | :--- | ---: | ---: | ---: |
| 2. Moderate | 49 | 495.39 | 14.16 |
| 3. Light | 103 | 1041.33 | 29.77 |
| 4. No grazing | 133 | 1344.63 | 38.44 |
| | 346 | 3498.06 | 100.00 |

It is seen that grazing in different intensities occurs in 61.55% of the area, out of which 17.63% of the area is heavily grazed. Grazing has a direct impact on the regeneration status. It also renders the soil compact. Intensity of grazing is heavier in kollegal forest Division and fortion of Mysore and Hunsur Divisions nearer to habitation.
4. 17 PRESENCE OF WEEDS:

In 97.42% of forest area occurrence of weeds was noticed. The following table inditate the presence of weeds in the area.

Table No. 25

S.No.	Presence of weeds	No. of plots	Area in kme.	Percentage
1.	Very dense	48	485.28	13.87
2.	Dense	98	990.78	28.32
3	Moderate	87	879.57	25.14
4.	Scanty	111	1122.21	32.08
5.	Absent	2	20.22	0.58
	TOTAL	346	3498.06	97.79

In 97.69% of the area presence of grass was moticed. In 47.11%. presence was scanty. The details of area in which presence of grass was noticed are given below:

Table No.2t.

S.No. Presence of grass	No. of Plots	Area in Km. Percentage		
1.	Very dense	35	353.85	10.12
2.	Dense	47	475.17	13.58
3.	Moderate	93	940.23	26.88
4.	Scanty	163	1647.93	47.11
5.	Absent	8	80.88	2.31

4.19 PLANTATION POTENTIAL:

Plantation potential in the entire forest land was assessed by considering the land class to which the sample plot laid out belongs. While deciding this, other factors such as aspect, soil depth, drainage, crop in surrounding area and other biotic, climatic factors were considered. All those forests where the crown density is 30% or more, plantation potentil is not of any significance and such area has been put under - Not applicable" category. The following table gives the plantation

Table No. 27.

S.No. Plantation potential	No. of plots	Area in kme. Percentage		
1.	Plantable	71	717.81	17.51
2.	Unplantable	11	111.21	3.02
3. . Not applicable	282	2851.02	77.47	
	ToTAL	364	3680.04	100.00

The table shows that 17.51% of the area admeasuring 717.81 kme. is having potential for plantation which should be given consideration while preparing the future plan.

The enrichment plantations are being attempted in some of those areas also where crown density is above 30%.
4.20 STATE DF FOREST (Degradation):

The extent of degradation of the forest area was judged from two angles, one is based upon the natural calamities such as landslide, flood, rainfall etc. and other is based upon human factors like grazing, fire, pollarding, illicit cutting and topping.

The following table indicates the status of the forest in both the categories.

Table No. 28

S.No.	Degraded forests to human factors)	No. of plots	Area in kme. Percentage	
1.	Heavily degraded	39	394.29	11.27
2.	Moderately degraded	40	404.40	11.56
3.	Mildly degraded	85	859.35	24.57
4.	Not degraded	182	1840.02	52.60
	ToTAL	346	3498.06	100.00

Table No. 29
S.No. Degraded forests (due No. of plots Area in kime Percentage to natural calamities).

1. Moderately degraded	2	20.22	0.58	
2. Mildly degraded	47	475.17	13.58	
3.	Not degraded	297	3002.67	85.84
	346	3498.06	100.00	

It is seen that about half of the area is not degraded by human interference. This may be due to the fact that regulations are strictly enforced in the National Park and Sanctuary areas.

It is seen that the natural calamities have not affected the forest area considerably and about 86% of the area is not degraded.

4.21 OCCURRENCE OF BAMBOD: 4.21.1 BAMBOO DENSITY:

The following tatle indicates the density of bamboo in the
forest area:

Tatle No. 30^{2}

5.No.	Bamboo density No.	f Plots	Area in kima	Percentage
1	2	3	4	5
1.	Pure bamboo	1	10.11	0.29
2.	Very dense	6	60.66	1.73
3.	Dense	13	131.43	3.76
4.	Moderately dense	14	141.54	4.05
5.	Scattered	20	202.20	5.78
6.	Sparse	52	525.72	15.03
7.	Bamboo present but clumps completely hacked by people.	5	50.55	1.45
8.	No bamboo	209	2112.99	60.40
9.	Regeneration crop	26	262.86	7.57
	total	346	3498.06	100.00

60.40% of the forest area is devoid of bamboo. The area covered under the bamboo is $1385.07 \mathrm{~km} \mathrm{~m}^{\mathbf{2}}$. out of which 262.86 kme . is regeneration crop. Occurrence of bamboo is mostly sparse and scattered. Only about 6% of the forest area is fiaving dense bamboo

4.21.2 BAMBOO QUALITY:

The bamboo areas were classified into bamboo site quality classes. For the purpose, the average of measurements of tallest culms
occurring in 2 ha, were taken into account. Quality classes were determimed as per the average height in the following manner.

Quality class	Average culm height
I	6 metre or more for Dendrocelamus strictus. 14 metre or more for Bambusa arundinacea.
I I	4 metres or more but less than 6 metres for Dendrocalamus strictus. 10 metres or more but less than 14 metres forBambusa arundinaceas
III	2 metres or more tut less than 4 metres for Dendrocalamus strictus. 2 metres and more but less than 10 metres for Bambusa arundinaceg.

The following table gives the occurrence of bamboo in different quality classes in the forest area.

Table No. 31

S.No.	Bamboo quality	No. of plots	Area in kme.	Percentage
1.	First	75	758.25	54.74
2.	Second	12	121.32	8.76
3.	Third	24	242.64	17.52
4.	Not applicable (Regeneration crop)	26	262.86	19.98
	TOTAL	137	1385.07	100.00

It is seen that majority of the area covered under bamboo contains quality-I bamboo which comes to 54.74% Percentage of quality II \& ItI romes to 8.76%, 17.52% respectively. 17.98% area is having regeneration crop only.

4.21.3 BAMBOD FLDWERING:

Flowering has not occurred in 86.86% of the bamboo area while in 13.14% of the area sporadic flowering was notiged. The following table indicates the flowering status:

Table No. 32

S.No.	Bamboo flowering	No. of plots	Area in kmt ${ }^{\text {a }}$	Percentage
1.	Sproradic	18	181.98	13.14
2.	No flowering	119	1203.07	86.86
	TOTAL	137	1385.07	100.00

4.21.4 BAMBDC REGENERAT IDN:

The following table indicates the regeneration status of bamboo in the forest area.

Table No. 33

S. No.	Bamboo regeneration	No. of plots	Area in kme Percentage	
1.	Dense	1	10.11	0.73
2. Medium	Scattered	30	303.30	21.90
4.	92	930.12	67.15	
	14	141.54	10.22	

It is seen that in 67. 15\% of the bamboo area; regeneration is scattered and in 21.90% of the area is covered with medium regeneration.

Only 0.73\% of the area is having dense regeneration. Regeneration is atsent in 10.22\% of the area.

4.2こ GROWING STOCK:

4.22.1 GROWING STAND (STEM):

The following table gives the number of stems in various categories as indicated below:

Table No. 34

S.N.	Crop composition.	No. of sample points.	Area in sq. km.	Stem/ha.	Total No. of stems.	Percentage
1.	Teak	15	151.65	218.667	3316080	5.70
2	Bamboo	2	20.22	75.00	151650	0.26
3.	Miscellaneous.	327	3326.19	164.62	54755760	94.04
	TOTAL	346	3498.06	166.445	58223490	100.00

The total number of stems in the tree forest area is $5,82,23,490$ with an average of about 166 stem per hectare. 94% of the crop falls under miscellaneous category.

The following tatle gives the number of stems/ha. and total number of stems of each species present in the Mysore forest:

Table No. 35

S1.No.	Name of speries	$\begin{aligned} & \text { No. of } \\ & \text { Stem/ha. } \end{aligned}$	Total no. of stem.	Percentage
1.	Anogeissus latifolia	33.410	11687960	20.07
2.	Terminalia crenulata	13.353	4670820	8.02
3.	Tectona grandis	10.607	3710370	6.37
4.	Hardwickia binata	9.191	3214980	5.52
5.	Grewia tieliaefolia	6.185	2163540	3.72
6	Pterocarpus marsupium	5.434	1700680	3.26
7.	Dalbergia latifolia	3.584	1253640	2.15
8.	Terminalia paniculata	2.137	748140	1.25
9.	Boswellia serrata	2.023	707700	1.22
10.	Diospyros melanoxylon	0.54 .7	192090	0.33
11. Schle	ichera trijuga/oleosa	0.520	181980	0.31
12.	Lagerstroemia lanceolata	0.318	111210	0.19
13.	Santalum album	0.116	40440	0.07
14.	Vitex altissima	0.029	10110	0.02
15.	Rest of species	78.988	27630630	47.46
	TOTAL		58223490	100.00

The three species Anogeissus latifolia, Tectona grandis and Terminalia crenulata comprise one third of the total growing stand. Dut of $5,82,23,470$ stems, Anogeissus latifolia has a tally of $1,16,87,160$, (20.7\%) Teak $37,10,37(6.37 \%$) and Terminalia crenulata has 46,70,820 (8.02\%). Dut of toal 66.445 stem/ha, 33.41 stems belong to Anogeissus latifolia, 13.353 to Terminalia erenulata and 10.60 to Tectona grandis. 68.67% of the crop falls in the diameter class 10-20 $\quad 6 m$ and 86.71% of the crop is distributed upto $25-30$ cm. diameter class.

The sandalwood population in the district is 0.07% of the total number of stems. The total number of stems comes to 40,440 according to the survey which are of 10 cms. diameter and above. The diameter class wise details have been enclosed in Anחexurewis II.

The following tatle indicates the number of stems/ha and total number of stemin each Forest Division.. oc

Table No. 36
S.N: Forest Division No. of Area in Total No. No. of Fercentage $\begin{aligned} & \\ & \text { sample kme. } \\ & \text { Flots. }\end{aligned}$

1.	Hunsur	18	181.98	2992560	164.444	5.14
2.	Mysore	38	384.18	7327750	190.787	12.57
3.	Chamirajnagar	46	465.06	7317640	157.371	12.57
4.	Kollegal	165	1668.15	25790610	154.606	44.30
5.	Bandipur Tiger Project	77	798.69	14790930	185.170	25.40
	TOTAL	346	3498.06	58223490	166. 445	100.00

The table indicating divisionwise growing stand for various species in different dia-classes have been enclosed in Annexure-IX \& XVIII.

CROP COMPDSITION - TEAK FOREST:

In Teak stratum, it is found that out of 3316080 stems, Teak has tally of $940230(28.35 \%)$ stems followed by Anoreissus latifoliag with 738030 stems. Ierminalia crenulata with 293190, Dalberaia latifolia with 141540 stems. The rest of the sfecies put together constitute about 930120 stems in this stratum (about 28.08%). The following table shows the number of stems and stem/ha sfecies wise in Teak stratum.

DIVISION WISE POSITION OF GROWING STAND B GROWING STOCK

Growing stock $\mathrm{M}^{3} / \mathrm{ho}$

Tatie No: 37

S.N.	Species Name	Stem/tia.	Total No.	Percentage
1.	Tectona grandis	62.000	940230	28.35
2.	Anogeissus latifolia	48.667	738030	22.26
3.	Terminalia crenulata	19.333	293190	8.84
4.	Dalbergia latifolia	9.333	141540	4.27
5.	Grewia tiliaefolia	6.667	101100	3.05
6.	Pterocarpus marsupium	5.333	80880	2.44
7.	Lagerstroemia lanceoilata	2.667	40440	1.22
8.	Schleichera trijuga	2.000	30330	0.91
9.	Terminalia paniculata	1.333	20220	0.61
10.	Rest of the species	61.333	930120	28.08

From the above table it is seen that 50% of the total stems comprises of Tectona grandis and Anogeissus latifolia. The details of growing stand in differnet diameter classes have been given in Annexure III \& IV.

About one third of the stems falls in the category of 10 - 15 cms. diameter class. 75.6% of the crop is distrituted upto 25-30 cms. diameter classes.

CROP COMPOSITIDN - BAMBCD FBREST:

In bamboo forest it is found that out of 151650 stems, Dalbergia latifolia has 70770 stems which is 46.67% of the total stem in bamboo stratum. Pterocarpus marsupium and Santalum altum has each 20220 stems(13.33\%) followed by Grewia tieliaefolia and Terminalia crenulata each having 10110 stems $(6.67 \%$). The rest of the species put together
constitute about 20220 stems (13.33\%) in the stratum.

The following table shows the number of stems per ha. and the total number of stems of each species in Bamboo stratum

Table No. 38

S.N.	Species name	No. of stem/tıa.	Total Rercentage of stem.	
1.	Dalbergia latifolia	35	70770	
2.	Grewia tieliaefolia	5	10110	6.6.67
3.	Pterocarpus marsupium	10	20220	13.33
4.	Santalum altum	10	22220	13.33
5.	Terminalia crenulata	5	10110	6.67
6.	Rest of the speries	10	20220	6.37 13.33

The details of growing stand in different diameter classes have been given in Annexure - V s $V I$. The two third of the crop is found to be in 10-15 cms. diameter class.

CROP COMPOSITION OF MISCELLANEOUS FOREST:

Out of 54755760 stems in the miscellaneous stratum, 20\% is Anogeissus latifolia followed by Terminalia crenulata with 8%, Hardwickia binata with 5.87% and Tectona grandis with 5.06%

The species wise number of stems per ha. and total number of stems in the miscellaneous forest is given below:

Table No. 39

| S.N. | Species Name | No. of |
| :--- | :--- | :--- | :--- | :--- |
| stems/ha | Total
 No.
 stef | Percentage |

10.	Schleicheratrijuga/oleosa	0.456	151650	0.28
11.	Tectonagrandis	8.328	2770140	5.06
12.	Terminaiiacrenulata	13.131	4367520	7.98
13.	Terminaliaqaniculata	2.188	727920	1.33
14.	Vitexaltissima	0.030	10110	0.02
15.	Restofspecies	80.213	26680290	48.73

The details of growing stand in different diameter classes have been given in Annexure-VII \& VIII.

About half of stem (49\%) is of the 10-15 cm. diameter classes 87% of the cropis distributed upto 25-30 cms. diameter classes.

Anogeissus latifolia is the major species in this stratum having 32.918 stems per ha.

4.22.2 GRDWING STOCK (VOLUME):

Growing stock has been estimated for different crop composition stratum in terms of volume per hectare and total volume. The following table indicates the growing stock in different stratuma

Table No. 40

S.N.	Crop composition.	No. of sample plots.	Area in $k m^{2}$.	Volume/han in m^{3}.	Total volume in π^{3}.	Percentage
1.	Teal:	15.	151.651	102.613	1556131	8.25
2.	Bamboo	2	20.22	11.02	22281 -	0.12
3.	Miscellaneous	34	3326.17	51.959	17282437	91.63
	TOTAL	346	3498.06	53.718	18860869	100.00

The following table indicates the growing stock in each forest Division.

S.N.	Forest Division	Non of Area sample in plots. km.		Total arowing stock: (volume) in m^{3}.	```Growing stock/ ha. in m```	Percentage
.152						
1.	Hunsur	18	181.78	1007689	55.374	5.34
2.	Mysore	38	384.18	3087561	80.368	16.37
3.	Chamrajnagar	46	465.06	2433263	52.321	12.70
4.	Kollegal	165	1668.15	6145256	36.837	32.50
5	Bandipur Tiger Project.	79	778.69	6187101	77.466	32.81
	TOTAL	346	3473.06	18860867	53.718	100.00

After comparing this table with table No. 36 ; it is found that although Kollegal Forest Divisjon contains 44.30% of the growing stand of the district, it has 32.58% of the growing stock in terms of volume, while Mysore arid Bandifur Tiger Project Divisions containing 12. 59% and 25.40% of the growing stand respectively have 16.37% and 32.81% of the total growing stock in terms of volume.

This shows that Kollegal Forest Division contains inferior forest as compared to Mysore and Eandipur Tiger Project Divisions.

The details of the Division-wise growing stock of varioius species in different diameter classes have been given in Annexure-XXVII to $X X X V I=$

TOTAL VOL_UME AMD VDLUME PER HECTARE:

Table Non 42 shows the total volume distritution and volume per hectare in the mysore district. It shows that out of total volume of
$18860869 \mathrm{cu} . \mathrm{mtr}$. Anogeissus latifolia has a volume of 3261483 mb which is 17.3% followed by Tectona arandis with 13.47% and Terminalia frenulata with 12.11%.

Table No. 42

S.N.	Species Name	$\begin{gathered} \text { Total volume } \\ \text { in } m^{3} \text {. } \end{gathered}$	Volume/ トa.	Percentage
1.	Anogeissus latifolia	3261483	9.32 .4	17.30
2.	Tectona grandis	2540894	7.264	13.47
3.	Terminalia crenulata	2284827	6.532	12.11
4.	Pterocarpus marsupium	1197992	3.43	6.36
5.	Hardwickia binata	655064	1.873	3.47
6.	Grewia tiliaefolia	629376	1.799	3.34
7.	Dalbergia latifolia	516700	1.477	2.74
8.	Schleichera trijugadoleosa	426092	1.218	2.26
9.	Terminalia paniculata	226283	0.647	1.20
10.	Boswellia serrata	122197	0.349	0.65
11.	Diospyros melanoxylon	18548	0.053	0.10
12.	Lagerstromia lanceolata	90225	0.258	0.48
13.	Vitex altissima	5586	0.016	0.03
14.	Rest of the species	6880803	19.670	36.49

The details of the growing stock in various diameter classes have been given in Annexure XIX \& $X X$.

Out of 53.718 m3/ha. Anogeissus latifolia contributed 9.324 m3/ha. On comparing the fosition of various species in Table No. 35 where Anogeissus latifolia stood first both in terms of stem and stems/ha. and total volume and volume/ha., whereas although Terminalia crenulata has more number of stems and swems/ha. but in volume it stand third after fectona grandis. The reason behind it is that although the number of stems is more in case of Ierminalia crenulata these are more spread in lower diameter classes.

The following table shows the total volume distribution and volume/ha 1π Teak stratum (area 151.6S kmi.). It indicates that out of total volume of 1556131 m3. Teak has a volume of 781459 m3 which is about 50.22%, followed by Anogeissus latifolia with 16.07%.

Table No. 43

S.N.	Species Name \quad Tot	Total volume in π^{3}.	Volume/ ha.	Percentage
1.	Tectona grandis	781459	51.53	50.22
2.	Anogeissus latifolia	250081	16.471	16.07
3.	Dalbergia latifolia	83712	5.52	5.38
4.	Terminalia crenulata	72507	4.781	4.66
5.	Schleictiera trijuga/oleosa	62491	4.121	4.02
6.	Pterocarpous mersupium	48710	3.212	3.13
7.	Grewia tiliaefolia	43091	2.841	2.77
8.	Lagerstroemia lanceolata	31628	2.086	2.03
9.	Terminalia paniculata	11077	0.730	0.71
10.	Rest of the speries	171377	11.301	11.01

The diameter class wise details of the above have been given in Annexure XXI \& XXII.

After comparing tife Table No. 43 with Table No. 37 , it is clear that although Teak has 28.35% of the total number of stems, in terms of volume, it has 50.22% of the growing stock. It is due to the reason that Teat: crop is well distributed in higher diameter classes while other species are more distributed towards lower diameter classes. Similarly due to the same reason although in terms of number of stems, Terminalia crenulata is above the Dalbergia latifolia, the former contains less volume than the latter.

CROP COMPOSITIDN BAMBCO:

The following table gives the volume distribution and volume per ha. in Bamboo stratum (tree: $20.22 k m^{2}$).

Table No. 44

S.N.	Name of species	$\begin{gathered} \text { Total volume } \\ \text { in } \pi^{3} \text {. } \end{gathered}$	Volume/ han in π^{3}.	Percentage
1.	Dalbergia latifolia	10684	5.284	47.94
2	Grewia tieliaefolia	1661	0.822	17.46
3.	Santalumı album	1520	0.751	6.81
4.	Terminalia crenulata	1416	0.701	6.36
5.	Pterocarpous marsupium	1164	0.576	5.23
6.	Rest of species	5837	2.887	26. 20

The details of the growing stock present in various diameter classes have been given in Annexure XXIII \& XXV.

Daltergia latifolia is the major component in this stratum containing 47.94% of total growing stock followed by Grewia tiliaefolia. Santalum album, Terminalia crenulata and pterocarpus marsupium having 17.46% to 5.23% of the growing stock.

CROP CDMPOSITIDN MISCELLANEDUS:

The volume distribution of various species in the miscellaneous forest is indicated in the following table:

Table No. 45 .

S.N.	Spegies Name T	$\begin{gathered} \text { Total vplume } \\ \text { in } m^{3} \end{gathered}$	$\begin{aligned} & \text { Volume/f } \\ & \text { in } m^{\mathbf{B}} \end{aligned}$	percentage
1.	Anogeissus latifolia	3011402	9.054	17.43
2.	Terminalia crenulata	2210902	6.647	12.79
3.	Tectona grandis	1757435	5.290	10.10
4.	Pterocarpus mersupium	1150117	3.458	6.66
5	Hardwickia bimata	655064	1.969	3.79
6.	Grewia tiliaefolia	584624	1.758	3.38
7	Dalbergia latifolia	422304	1.270	2.44
8.	Gehleichera trijuga/oleosa	- 363601	1.093	2. 10
7.	Termjnalja faniculata	215207	0.647	1.25
10.	Boswellia serrata	122197	0.367	0.71
11.	Lagerstroemia lanceolata	58597	0. 176	0.34
12.	Diospyros melanokylon	18548	0.056	0.11
13.	Vitex altissinta	5586	0.017	0.03
14.	Santalum album	1281	0.004	0.01
15.	Rest of sfecies	6703570	20.154	38.78
	About 40\% of the growing stock is comptised of			species,
namely	Anopeissus latifolia	Termina	Erenul	. 77%) and
Tectona	grandis (10.18\%)			

Contribution of Sandal wood to growing stock is negligible. This point is worth noting becuase of the fact that this district is considered to have good Sandal wood forest.

Table showing the growing stock under different diameter classes have been enclosed in Annexure-xXV \& XXVI.

4.22.3 GROWING STDCK BAMBDOS:

The following table gives the distribution of bamboos by sfecies and quality class in the suryeyed area :

The fallowing table gives the distribution of bamboos by species and quality class in the surveyed area:

Table No. 46

Thus, out of total area under bamboo, 17% are covered with BambuSa arundinacea and 83% are with Dendrocalamus strictus. Dut of quality-I area 80% are covered with Dendracalamus strictus while 20\% are covered with Bambusa arundinacea. The percentage of quality II \& III are covered under. Dendrogalamus strictus is 72 and 87.5 respectively, while Bambusa arundinacea occupies 8% of the quality-II area and 12.5% of the qualityIII area.

BAMBDD STOCK BY WEIGHT

The average height and weight of a sound green culmin diameter
 out from the data recorded in Bamboo Weight Form which is presented Eelow:

Table No. 47

S.N.	Species Name	Culm dia. class.	Average height of culmin metre.	Average green weight of a culminkg.	Average air dry weight of a culmin kg.	Average air dry weight as a culm percentage of the average green weight.	
1. Bambusa arundinacea.		$\begin{aligned} & 2 \mathrm{~cm} \text { to }<5 \\ & \mathrm{~cm}, \\ & 5 \mathrm{~cm} \text { to }<8 \\ & \mathrm{~cm} . \\ & 8 \mathrm{~cm} \& \text { above } \end{aligned}$	6.186	4.838	1.979	40.905	
		8.550	17.311	6.681	38.594		
		20.000	46.79	28.444	60.791		
2. Dendrocalamus strictus.			$\begin{aligned} & 2 \mathrm{~cm} \text { to }<5 \\ & \mathrm{~cm} . \\ & 5 \mathrm{~cm} \text { to }<8 \\ & \mathrm{~cm} . \end{aligned}$	5.276	3,915	2.017	51.520
		6.15		12.339	6.644	53.846	
		8 cmas above	0.00	0.000	0.000	0.000	

Here utilizable length reckoned upto 1 cm. culm diameter only. The above data has been used for calculating the bamboo stock of weight in the surveyed area. The results have been enclosed in the AnnexureXLIV \& XLV.

From the result the total bamboo stock (Green Weight) comes to 137844 tonnes and its dry equivalent weight is 23518 tonnes. It is also seen that about 17.28% of the total bamboo stock consists of dry culms. Dut of the balance 114026 tonnes about 31.72% or 36164 tonnes are damaged, which is indicative of the considerable biotic and wild life pressure on the bamboo in the district.

It is also seen that 30370 tonnes out of the 137844 tonnes of the green bamboo stock inen, 2e\% consists of current year culm. Therefore, $i t$ can be concluded that the surveyed area can yield 30370 tonnes of bamboos per year if due attention on careful nurtiring of the stofk is biven and the dry and decayed bamboos are timely removed to eliminate fire hazards.

4.23 STANDARD ERROR:

Standard error is a useful indicator of the error involved in estimating the various parameters. It expresses the error as a fercentape of the mean value of the parameter. The following tables indicate the size of the error when the surveyed area is attempted to be stratified in different ways.

Table No. 48

SE\% OF GROWING STDCK OF TREE FOREST AREA STRATIFIED BY LEGAL STATUS

S.N. Type of forests.	No. samp poir	Stems/ha.	S.E.\%	Volume/ ha. in m^{3}.	S.E.\%	Probability level.
12	3	4	5	6	7	8
1. Reserved Forests.	224	155.714	6.435	41.706	11.927	95\%
2. Proterted Forests.	2	125.000	4.000	22.215	37.410	75\%
3. Unclassed Forests.	6	40.000	41.332	4.672	40.140	75\%
4. National Part:	114	175.351	8.071	81.063	12. 124	75\%
					\pm	
TOTAL	346	166.590	5.035	53.718	8.856	75\%

Table No. 49

SE\% OF GROWING STOCK OF TREE FOREST AREA STRATIFIED BY FOREST TYPE

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Teak
 Forests. | 15 | 218.667 | 13.846 | 102.613 | 11.586 | 95% | |
| 2. Bamboo
 Forests.
 M. Misc.
 Forests. | 2 | 329 | 164.62 | 5.324 | 51.959 | 9.369 | 95% |
| TOTAL | 346 | 166.590 | 5.096 | 53.918 | 8.754 | 95% | |

Table No. 50
SE\% OF GROWING STOCK OF TREE FDREST AREA STRATIFIED EY FOREST DIVN.

Table No. 51

SE\% of Growing Stock: of Bamboo

| Species | No. of
 Sample Points | Mean No. of
 culms ha | SE\% | Porbability |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Level | | | | |

ANVEXURE I No of Sample Plots-346 Area-3498.06 in Sq. Kos.
Table showing the Growing Stand per he of MYSORE District

166.445 0.868 2.168
SCORE SPECIES NAM
.
ANNEXURE II
Table showing the Growing Stand (in lacs) of MYSORE District

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	D31_35	D36_40	D41_50	051_60	061_70	D80p	Total
072 ANDGEISSUS LATIFOLIA	57.221	27.197	14.762	7.584	4.145	2.326	2.931	0.605	0.000	0.101	116.872
133 BESWELLIA SERRATA	3.236	2.428	0.507	0.304	0.304	0.203	0.101	0.000	0.000	0.000	7.077
266 Dallbergia latifalia	3.942	2.728	2.326	1.616	0.907	0.304	0.406	0.101	0.101	0.101	12.536
285 DIDSPYRCS MELANOXYLON	1.112	0.406	0.304	0.101	0.000	0.000	0.000	0.000	0.000	0.000	1.921
431 GREWIA TIELIAEFOLIA	10.008	4.852	1.920	1.315	1.518	0.808	0.808	0.304	0.000	0.101	21.635
441 HARDWICKIA BINATA	10.816	5.863	5.761	2.022	2.123	1.214	2.627	0.101	1.616	0.000	32.150
504 LAGFRSTROEMIA LANCEOLATA	0.605	0.203	0.050	0.000	0.000	0.000	0.101	0.000	0.101	0.101	1.112
722 PTEROCAEPUS MARSUPIUM	3.942	3.942	3.540	2.830	1.011	0.605	1.112	0.507	1.214	0.304	19.007
780 SANTALUH ALBMM	0.304	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.404
795 SCHLEICHERA TRIJUGA/OLEOS	0.060	0.203	0.203	0.304	0.101	0.101	0.304	0.101	0.203	0.304	1.820
B58 TECTONA GRANDIS	5.055	4.649	6.269	4.750	3.841	3.540	4.852	2.326	1.214	0.605	37.104
866 TERMINALIA CRENLATA	18.806	8.290	6.674	4.044	2.022	1.718	2.728	1.417	0.707	0.304	46.708
869 TERMINALIA PANICULATA	3.638	0.605	1.417	0.507	0.707	0.406	0.000	0.101	0.101	0.600	7.481
898 UITEX ALTISSIMA	0.000	0.000	0.000	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.101
RRR REST OF SPECIES	161.862	58.033	22.545	13.142	6.269	4.551	4.750	1.718	2.326	1.112	276.306
	280.54	19.501	66.229	38.622	22.951	15.776	20.723	7.283	7.584	3.036	582.235

ANVEXURE III
Table showing the Growing Stand per hec. in Teak Forest of MYSORE District No of Sample Plots- 15 Area- 151.65 in Sq. Kins.

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	231_35	D36_40	D41_50	D51_60	D61_70	D80p	Toial
072 Anogeicsus latifolia	21.333	12.000	4.667	3.333	2.000	2.000	3.333	0.000	0.000	0.000	48.667
266 DALBERGIA LATIFOLIA	0.000	2.000	1.333	2.000	1.333	2.000	0.667	0.000	0.000	0.000	9.333
431 GREWIA TIELIAEFOLIA	0.667	2.000	1.333	0.000	2.000	0.000	0.667	0,000	0.000	0.000	6.667
504 LAGERSTROEMIA LANCEOLATA	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.667	0.000	2.667
722 PTERDCARPUS MARSUPIUM	1.333	1.333	0.000	0.667	0.000	1.333	0.000	0.667	0.000	0.000	5.333
795 SCHLEICHERA TRIJUGA/OLEOS	0.000	0.000	0.000	0.667	0.000	0.000	0.667	0.000	0.667	0.000	2.000
858 TECTONA GRANDIS	8.000	5.333	10.000	8.000	6.000	8.000	6.667	5,333	2.667	2.000	62.000
86b TERMINALIA CREMLATA	8.000	2.667	5.333	3.333	0.000	0.000	0.000	0.000	0.000	0.000	17.333
869 TERMINALIA PANICLLATA	0.000	0.000	0.667	0.000	0.000	0.667	0.000	0.000	0.000	0.000	1.333
RRR REST OF SPECIES	30,000	16.000	8.000	3.333	2.000	0.667	0.000	0.000	1.333	0.000	61.333

248.667 2.000
5.334
6.000
12.001
14.667
3.333
21.333
$71.333 \quad 41.333 \quad 31.333$
-
ANMEXURE IV
Table showing the Growing Stand (in lacs) in Teak Forest of MVSRRE District

SCODE SPECIES NAME	010_15	D16_20	D21_25	D26_30	031_35	036_40	041_50	051_60	D61_70	D80p	Total
072 ANOGEISSUS LATIFOLIA	3.235	1.820	0.708	0.505	0.303	0.303	0.505	0.000	0.000	0.000	7.380
266 DALBERGIA LATIFOLIA	0.000	0.303	0.202	0.303	0.202	0.303	0.101	0.000	0.000	0.000	1.415
431 GREWIA TIELIAEFOLIA	0.101	0.303	0.202	0.000	0.303	0.000	0.101	0.000	0.000	0.000	1.011
504 LAGERSTROEMIA LANCEDLATA	0.303	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.101	0.000	0.404
722 PTEROCARPUS MARSUP IUM	0.202	0.202	0.000	0.101	0.000	0.202	0.000	0.101	0.000	0.000	0.809
795 SCHLEICHERA TRIJUGA/DEEOS	0.000	-0.000	0.000	0.101	0.000	0.000	0.101	0.000	0.101	0.000	0.303
858 TECTONA GRANDIS	1.213	0.809	1.517	1.213	0.910	1.213	1.011	0.809	0.404	0.303	9.402
866 TERMLNALIA CRENURATA	1.213	0.404	0.809	0.505	0.000	0.000	0.000	0.000	0.000	0.000	2.732
869 TERMINALIA PANICLLATA	0.000	0.000	0.101	0.000	0.000	0.101	0.000	0.000	0.000	0.000	0.202
RRR REST OF SPECIES	4.550	2.426	1.213	0.505	0.303	0,101	0,000	0,000	0.202	0.000	9.301
	10.818	6.268	4.752	3,235	2.022	2.224	1.820	0.910	0.809	0.303	33.161

ANMEXURE V
Table showing the Growing Stand per hec, in Bamboo Forest of MVGORE District No of Sample Plots-2 Area-20.22 in Sy. Kas.

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30'	D31_35	D36_40	04150	D51_60	Db1_70	D80p	Total
266 DALEERGIA LATIFOLIA	25.000	10.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	35.000
431 GRENIA TIELIAEFOLIA	0.000	5.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.000
72 CL PTERCCARPUS MARSUPIUM	10.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	10.000
780 SANTALUM ALBEM	5.000	5.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	10.000
B66 TERMINALIA CRENULATA	5.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.000
RRR REST OF SPECLES	5.000	0,000	0.000	0.000	5.000	0.000	0.000	0.000	0.000	0.000	10.000
	50.000	20.000	0.000	0.000	5.000	0.000	0.000	0.000	0.000	0.000	75.000

Table showing the Growing Stand in Bamboo forest (in lacs 1 of MYSORE District No of Sample Plots-2 Area-20.22 in Sq. Kms.											
SCODE SPECIES NAME	D10_15	D13_20	D21_25	D26_30	D31 35	D36_40	D41_50	D51_60	D61_70	D80p	Total
266 Dalbergia latifoila	0.505	0.202	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.708
431 GREWIA TIELIAEFOLIA	0.000	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.101
722 PTEROCARPUS MARSJPINM	0.202	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.202
780 SANTALLUY ALBUM	0.101	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.202
866 TERMINALIA CREMLATA	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.101
RRR REST OF SPECIES	0.101	0.000	0.000	0,000	0.101	0.000	0.000	0.000	0.000	0.000	0.202
	1.011	0.404	0.000	0.000	0.101	0.000	0.000	0.000	0.000	0.000	1.517

ANEXURE VII
Table showing the Growing Stand per her, in Miscellaneaus Forest of MYSare District

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	D31_35	D36_40	D41_50	D51_60	D61_70	D80p	Total
072 ANGGEISSUS LATIFOLIA	16.231	7.629	4.225	2.128	1.155	0.608	0.729	0.182	0.000	0.030	32.918
133 BOSWELLIA SERRATA	0.973	0.729	0.152	0.091	0.091	0.061	0.030	0.000	0.000	0.000	2.128
266 DALBERGIA LATIFOLIA	1.033	0.669	0.638	0.395	0.213	0.000	0.081	0.030	0.030	0.030	3.131
285 DIOSPYROS MELANDXYLON	0.334	0.122	0.091	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.578
431 GREWIA TIELIAEFOLIA	2.979	1.337	0.517	0.395	0.365	0.243	0.213	0.091	0.000	0.030	6. 170
441 HARDHICKIA BLNATA	3.252	1.763	1.733	0.608	0.638	0.365	0.790	0.030	0.486	0.000	9.666
504 LAGERSTRIEMIA LANCEOLATA	0.091	0.061	0.000	0.000	0.000	0.000	0.030	0.000	0.000	0.030	0.213
722 PTEROCARPUS MARSUPIUM	1.064	1.125	1.064	0.821	0.304	0.122	0.334	0.122	0.365	0.091	5.410
780 SANTALLAM ALBUM	0.061	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.061
795 SCHLEICHERA TRIJUGA/OLEOS	0.060	0.061	0.061	0.061	0.030	0.030	0.061	0.030	0.030	0.091	0.456
858 TECTONA GARANDIS	-1.155	1.155	1.427	1.064	0.881	0.697	1. 155	0.456	0.243	0.091	8.328
866 TERMINALIA CRENULATA	5.258	2.371	1.763	1.064	0.608	0.517	0.821	0.426	0.213	0.091	13.131
867 TERMINALIA PANICULATA	1.094	0.182	0.355	0.152	0.213	0.091	0.000	0.030	0.030	0.000	2.188
898 VITEX ALTISSIMA	0.000	0.000	0.000	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.030
RRR REST OF SPECIES	47.264	16.717	6.413	3.799	. 1.763	1.337	. 1.429	0.517	0.638	0.334	80.213
	80.789	33.921	18.481	10.638	6.269	4.073	5.683	1.914	2.035	0.818	164.620

ANUEXURE VIII
Table showing the Growing Stand (in lacs) in Miscellaneous Forest of MYSORE District

SCODE SPECIES NAME	D10_15	D16_20	02425	D26_30	D31_35	036_40	D41_50	051_60	D61_70	D80p	Total
072 AMOGEISSUS LATIFOLIA	53.987	25.376	14.053	7.078	3.842	2.022	2.425	0.605	0.000	0.100	109.491
133 BOSNELLIA SERRATA	3.236	2.425	0.506	0.303	0.303	0.203	0.100	0.000	0.000	0.000	7.077
266 DALBERGIA LATIFOLIA	3.436	2.225	2.122	1.314	0.708	0.000	0.303	0.100	0.100	0.100	10.413
285 DIISPYRGS MELANOXYLON	1.111	0.406	0.303	0.100	0.000	0.000	0.000	0.000	0.000	0.000	1.921
431 GREWIA TIELIAEFOLIA	9.909	4.447	1.720	1.314	1,214	0.808	0.708	0.303	0.000	0.100	20.523
441 HARDWICKIA BIMATA	10.817	5.864	5.764	2.022	2.122	1.214	2.628	0.100	1.617	0.000	32.150
504 LAGERSTROEMIA LANCEDLATA	0.303	0.203	0,000	0.000	0.000	0.000	0.100	0.000	0.000	0.100	0.708
722 PTEROCARPUS MARSUPIUM	3.539	3.742	3.539	2.731	1.011	0.406	1.111	0.406	1.214	0.303	17.996
780 SANTALLM ALEBM	0.203	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.202
795 SCHLEICHERA TRIJUGA/DIEES	0.000	0.203	0.203	0.203	0.100	0.100	0.203	0.100	0.100	0.303	1.517
858 TECTONA GRANDIS	3.642	3.842	4.753	3.537	2.930	2.325	3.842	1.517	0.808	0.303	27.701
866 TERMINALIA CRENULATA	17.489	7.886	5.864	3.539	2.022	1.720	2.731	1.417	0.708	0.303	43.675
369 TERMINALIA PANICULATA	3.639	0.605	1.314	0.506	0.708	0.303	0.000	0.100	0.100	0.000	7.279
898 VITEX ALTISSIMA	0.000	0.000	0.000	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.101
RRR REST OF SPECIES	157.209	55,604	21.331	12.636	5.864	4.447	4.753	1.720	2.122	1.111	266.803
	268.720	112.828	61.471	35.384	20.825	13.548	18.903	6.366	6.769	2.721	547.558

SCODE SPECIES NAME	D10_15	D16_20	021_25	D26_30	D31_35	D36 40	D41_50	051_60	D61_70	DAOp	Total
072 ANDGEIS5US LATIFOLIA	9.444	3.889	3.333	0.556	2.778	0.556	2.222	0.000	0.000	0.000	22.778
266 DALBERGIA LATIFOLIA	4.444	3.333	1.111	1.667	0.000	0.000	0.000	0.000	0.000	0.000	10.556
285 DIISPYROS MELANDXYLOM	0.556	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.556
431 GREWIA TIELIAEFOLIA	0.000	1.111	0.000	0.000	0.000	0.000	0.556	0.000	0.000	0.000	1.667
504 LAGERSTRTEMIA LANCEOLATA	2.222	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.222
722 PTEROCARPUS MARSUPIUM	5.000	0.000	1.111	0.556	0.000	0.556	1.111	0.000	0.556	0.000	8,889
780 SANTALIM ALBUM	1.667	0.556	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.222
795 SCHLEICHERA TRIJUGA/CLEOS	0.000	0.556	0.000	0.000	0.000	0.000	0.000	0.000	0.556	0.000	1.114
858 TECTONA GRANDI5	0.000	1.111	2.778	1.667	1.667	2.778	1.111	1.667	0.556	0.000	13.333
866 TERMINHLIA CRENULATA	9.444	4.444	4.444	2.222	1.111	2.222	1.111	0.556	0.000	0.000	25.556
869 TERMINALIA PANICULATA	2.222	0.000	0.000	0.556	1.111	1.111	0.000	0.556	0.000	0.000	5.556
RRR REST OF SPECIES	35.556	15.556	8.333	5.000	1.667	2.778	0.556	0.556	0.000	0.000	70.000
	70.555	30.556	21.110	12.224	8.334	10.001	6.667	3.335	1.668	0.000	164.444

ANHEXURE X

SCODE SPECIES NAME	D10_15	D16_20	021_25	D26_30	031.35	D36_40	D41 50	051_60	[61_70	080p	Total
072 ANOGISSUS LATIFOLIA	1.717	0.708	0.607	0.101	0.506	0.101	0.404	0.000	0.000	0.000	4.145
266 DALBERGIA LATIFOLIA	0.809	0.607	0.202	0.303	0.000	0.000	0.000	0.000	0.000	0.000	1.921
285 DICSPYROS MELANOXYLON	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.101
431 GREWIA TIELIAEFOLIA	0.000	0.202	0.000	0.000	0.000	0.000	0.101	0.000	0.000	0.000	0.303
504 LAGERSTRIEMIA LAMCEILATA	0.404	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.404
722 PTERDCARPUS MARSUPIUM	0.910	0.000	0.202	0.101	0.000	0.101	0.202	0.000	0.101	0.000	1.698
780 SANTALLA ALBAM	0.303	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.404
795 SCHLEICHERA TRIJUGA/OLEOS	0.000	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.101	0.000	0.202
858 TECTDA ${ }^{\text {SRANDIS }}$	0.000	0.202	0.506	0.303	0.303	0.506	0.202	0.303	0.101	0.000	2.426
866 TERMINALIA CREMLATA	1.719	0.809	0.809	0.404	0.202	0.404	0.202	0.101	0.000	0.000	4.651
869 TERMIMALIA PANICLLATA	0.404	0.000	0.000	0.101	0.202	0.202	0.000	0.101	0.000	0.000	1.014
RRR REST OF SPECIES	6.470	2.831	1.516	0.910	0.303	0.506	0.101	0.101	0.000	0.000	12.739
	12.840	5.561	3.842	2.225	1.517	1.820	1.213	0.607	0.304	0.000	27.926

ANNEXURE XI

SCODE SPECIES NAME	010_15	016 20	021_25	D26_30	D31_35	D36_40	D41_50	D51_60	D61_70	D88p	Total
072 ANDGEISSUS LATIFOLIA	13.947	5.526	6.053	3.421	2.105	1.842	2.105	0.263	0.000	0.000	35.263
133 boshellia serrata	0.789	0.000	0.263	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.053
266 nalbergia latifolia	3.158	1.842	1.579	1.316	0.789	0.526	0.263	0.000	0.263	0.000	9.737
285 DISSPYRES MELANXYLIN	0.789	0.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.316
431 GRELIA TIELIAEFOLIA	2.105	1.842	1.842	0.526	0.526	0.000	0.000	0.000	0.000	0.000	6.842
504 LAGERSTROEMIA LANCEDLATA	0.263	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.263	0.263	0.789
722 PTEROCAFPUS MARSUPILM	1.316	1.053	1.579	0.526	0.526	0.000	0.789	0.526	0.263	0.000	6.579
795 SCHEICHERA TRIJUEA/DEEOS	0.000	0.263	0.050	0.263	0.000	0.000	0.526	0.263	0.263	0.789	2.368
858 TECTONA Grandis	0.789	1.053	2.895	1.316	2.895	1.053	2.632	1.842	1.316	0.263	16.053
866 TERMINALIA CREMLATA	13.158	5.000	4.474	3.158	1.842	0.789	1.316	0.789	0.000	0.263	30,789
869 TERMINLLIA PANICULATA	2.105	0.526	0.263	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.895
RRR REST OF SPECIES	39.211	15.000	9.474	5.000	2.105	2.368	1.579	1.053	0.526	0.789	7.105
	77,630	32.631	28.422	15.526	10.788	6.578	9.210	4.736	2.894	2.367	190.789

ANHEXIRE XII No of Sample Plots-38 Area-384.18 in Sa. Kms.

SCODE SPECIES NAME	010_15	D16_20	D21_25	D2b_30	031_35	D36_40	D41.50	D51_60	D6170	D80p	Total
072 ANOGEIS5US LATIFOLIA	5.358	2.123	2.325	1.314	0.809	0.708	0.809	0.101	0.000	0.000	13.547
133 BOSNELIIA SERRATA	0.303	0.000	0.101	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.404
266 DALBERGIA LATIFOLIA	1.213	0.708	0.607	0.506	0.303	0.202	0.101	0.000	0.101	0.000	3.741
285 DIOSP YROS MELANDXILON	0.303	0.202	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.505
431 GrEWIA TIELIAFFRLIA	0.809	0.708	0.708	0.202	0.202	0.000	0.000	0.000	0.000	0.000	2.629
504 LAGERSTROERIA LANCEOLATA	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.101	0.101	0.303
722 PTERDCARPUS MARSSPILM	0.506	0.405	0.607	0.202	0.202	0.000	0.303	0.202	0.101	0.000	2.588
795 SCHEEICHERA TRIJKKA/DCEOS	0.000	0.101	0.000	0.101	0.000	0.000	0.202	0.101	0.101	0.303	0.940
858 TECTONA GRANDIS	0.303	0.405	1.112	0.506	1.112	0.405	1.011	0.708	0.506	0.101	6.167
866 TERMINLLIA CREMLLATA	5.055	4.921	1.719	1.213	0.708	0.303	0.506	0.303	0.000	0.101	11.829
869 TERMINALIA PANICULATA	0.809	0.202	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.112
RRR REST DF SPECIES	15.064	5.763	3.640	1.921	0.809	0.910	0.607	0.405	0.202	0.303	29.622
	29.824	12.536	10.919	5.965	4.145	2.527	3.538	1.819	4.112	0.909	73.298

AMEXURE XIII

Table showing the Growing Stand per het. of CHAMARAANAGARA Division, MYSORE District

SCODE SPECIES NAME	010_15	D16_20	D21_25	D2t_30	D31_35	D36_40	D41_50	D51_60	D6170	D80p	Total
072 ANDGEISSUS LATIFOLIA	12.826	5.652	4.565	2.391	1.087	1.304	1.739	0.000	0.000	0.000	29.565
266 DALBERGIA LATIFILIA	1.087	0.435	0.435	0.000	0.217	0.000	0.217	0.000	0.000	0.217	2.609
285 DIOSPYROS MELANOXYLON	0.652	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.652
431 grewia tieliatralia	4.783	2.391	0.435	1.087	0.652	1.087	0.435	0.217	0.000	0.000	11.087
441 HARDWICKIA BINATA	0.217	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.217
722 PTEROCARPUS MARSUPIUM	1.957	0.435	0.652	0.435	0.217	0.435	0.217	0.435	0.000	0.000	4.783
795 SCHLEICHERA TRIJUGA/DLEOS	0.000	0.000	0.000	0.000	0.217	0.000	0.000	0.000	0.000	0.000	0.217
858 TECTONA GRANDIS	1.304	0.652	0.652	0.217	0.217	0.000	0.217	0.000	0.000	0.000	3.261
866 TERMINALIA CREMLLATA	5.217	1.739	0.870	0.652	0.870	0.652	1.304	0.435	0.652	0.435	12.826
869 TERMINALIA PANICULATA	0.217	0.217	0.652	0.435	0.435	0.000	0.000	0.000	0.000	0.000	1.957
RRR REST OF SPECIES	57.609	13.043	6.087	5.000	2. 174	1.739	1.522	1.087	1.304	0.652	90.217
	85.869	24.564	14.348	10.217	6.086	5.217	5.651	2.174	1.956	1.304	157.391

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	831_35	036_40	041_50	D51_60	D61_70	D80p	Total
072 ANGGEISSUS LATIFOLIA	5.965	2.629	2.123	1.112	0.506	0.606	0.809	0.000	0.000	0.000	13.750
266 DALEERGIA LATIFOLIA	0.506	0.202	0.202	0.000	0.101	0.000	0.101	0.000	0.000	0.101	1.243
285 DIESPYRES MELAMOXYLON	0.303	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.303
431 GRENIA TIELIAEFOLIA	2.224	1.112	0.202	0.506	0.303	0.506	0.202	0.101	0.000	0.000	5.156
441 HARDWICKIA BINATA	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.101
722 PTERDCARPUS MARSUPIUM	0.910	0.202	0.303	0.202	0.101	0.202	0.101	0.202	0.000	0.000	2.224
795 SCHLEICHERA TRIJUGA/OLEOS	0.000	0.000	0.000	0.000	0.101	0.000	0.000	0.000	0.000	0.000	0.101
858 TECTONA GRANDIS	0.606	0.303	0.303	0.101	0.101	0.000	0.101	0.000	0.000	0.000	1.517
866 TERMINLIA CREMULATA	2.426	0.809	0.405	0.303	0.405	0.303	0.606	0.202	0.303	0.202	5.965
-869 TERMINLLA PANIClLATA	0.101	0.101	0.303	0.202	0.202	0.000	0.000	0.000	0.000	0.000	0.910
RRR REST OF SPECIES	26.792	6.066	2.831	2.325	1.011	0.809	0.708	0.506	0.606	0.303	41.957
	39.934	11.424	6.673	4.752	2.830	2.426	2.628	1.011	0.910	0.606	73.196

ANNEXURE XV
? 3 ?

SCOIE SPECIES NANE	D10_15	D16_20	D21_25	D2t_30	D31_35	D36_40	041.50	D51_60	D81_70	D80p	Total
072 ANOGEISSUS LATIFOLIA	13.333	6.909	3.515	1.697	0.667	0.242	0.121	0.061	0.000	0,000	26.545
133 boShellia Serrata	1.515	1.394	0.121	0.182	0.182	0.121	0.061	0.000	0.000	0.000	3.576
266 DALPERGIA LATIFOLIA	0.000	0.000	0.121	0.061	0.000	0.000	0.000	0.000	0.000	0.000	0.182
285 DIDSPYRDS HELANOXYLON	0.000	0.061	0.182	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.242
431 GREWIA TIELIAEFOLIA	1.394	0.909	0.121	0.303	0.242	0.000	0.061	0.000	0.000	0.000	3.030
441 HARDNICKIA BINATA	6.424	3.515	3.455	1.212	1.273	0.727	1.576	0.061	0.970	0.000	19.212
722 PTERICARPUS MARSUPILTA	0.242	1.636	0.788	1.030	0.364	0.121	0.182	0.061	0.606	0.061	5.091
858 TECTONA GRANBIS	0.121	0.182	0.485	0.121	0.121	0.303	0.182	0.000	0.000	0.061	1.576
866 TERMINALIA CRENULATA	2.000	1.030	0.424	0.424	0.121	0.182	0.061	0.121	0.000	0.000	4.364
869 TERMINALIA PANICULATA	0.424	0.000	0.182	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.606
RRR REST OF SPECIES	55.212	19.455	6.545	3.273	2.000	1,152	1.333	0.242	0.788	0.182	90,182
	80.665	35.091	15.939	8.303	4.970	2.848	3.577	0.546	2.364	0.304	154.606

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	D31_35	D33_40	D41. 50	D51_60	061.70	D80p	Total
072 AMDGEISSUS LATIFOLIA	22.241	11.525	5.864	2.831	1.113	0.404	0.202	0.102	0.000	0.000	44.282
133 BCSWELLIA SERRATA	2.527	2.325	0.202	0.304	0.304	0.202	0.102	0.000	0.000	0.000	5.965
266 DALBERGIA LATIFOLIA	0.000	0.000	0.202	0.102	0.000	0.000	0.000	0.000	0.000	0.000	0.303
285 DIISPYFRLS PELANOXYLON	0.000	0.102	0.304	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.404
431 GrewiA TIELIAEFDIIA	2.325	1.516	0.202	0.505	0.404	0.000	0.102	0.000	0.000	0.000	5.055
441 HARDWICKIA BINATA	10.716	5.864	5.763	2.022	2.124	1.213	2.629	0.102	1.618	0.000	32.049
722 PTEROCARPUS MARSUPIUM	0.404	2.729	1.315	4.718	0.607	0.202	0.304	0.102	1.011	0.102	8.472
858 TECTONA GRANDIS	0.202	0.304	0.809	0.202	0.202	0.505	0.304	0.000	0.000	0.102	2.629
Q66 TERMINALIA CREMRLATA	3.336	1.718	0.707	0.707	0.202	0.304	0.102	0.202	0.000	0.000	7.279
869 TERMINALIA PANICULATA	0.707	0.000	0.304	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.011
ARR REST OF SPECTES	92. 102	32.454	10.918	5.460	3.336	1.922	2.224	0.404	1.315	0.304	150.437
	134.561	58.537	26.589	13.851	8.291	4.751	5.967	0.911	3.944	0.507	237.906

ANTEXURE XVII

Table showing the Growing Stand per hec.. of bandipur TIGER PROJECT Division, MySORE District

SCIDE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	031_35	D36_40	041_50	D51_60	D61 70	D80p	Total
072 ANDCEISSUS LATIFOLIA	27.468	12.785	4.810	2.785	1.519	0.633	0.886	0.506	0.000	0.127	51.519
133 EOSWELLIA SERRATA	0.506	0.127	0.253	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.888
266 dalbergia latifolia	1.772	1.519	1.392	0.886	0.633	0.127	0.253	0.127	0.000	0.000	6.709
285 DIOSPYROS MELANOXYLON	0.506	0.127	0.000	0.127	0.000	0.000	0.000	0.000	0.000	0.000	0.759
431 GREWIA TIELIAEFOLIA	5.523	1.646	1.013	0.127	0.759	0.380	0.506	0.253	0.000	0.127	10.633
504 LAGERSTROEMIA LANCECLATA	0.127	0.253	0.000	0.000	0.000	0.000	0.127	0.0001	0.000	0.000	0.506
722 PTEROCARPUS MARSUPIUM	1.549	0.759	1.372	0.759	0.127	0.127	0.253	0.000	0.000	0.253	5.190
795 SCHEEICHERA TRIJUGA/OLEOS	0.000	0.000	0.253	0.253	0.000	0.127	0.127	0.000	0.000	0.000	0.759
858 TECTONA GRANIS	4.937	4.304	4.430	4.557	2.658	2.658	4.051	1,646	0.759	0.506	30.506
866 TERMINALIA CRERRATA	7.848	3.797	3.797	1.772	0.633	0.506	1.646	- 0.759	0.506	0.000	21.266
869 TERMINALIA PANICULATA	2.025	0.380	0.886	0.253	0.380	0.253	0.000	8.000	0.127	0.000	4.304
898 VITEX ALTISSIMA	0.000	0.000	0.000	0.127	0.000	0.000	0.000	0.000	0.000	0.000	0.127
RRR REST OF SPECIES	26.835	13,671	4.557	3.165	1.013	0.506	1.392	0.380	0.253	0.253	52,025

ANVEXURE XVIII
Table showing the Growing Stand (in lats) of BANDIPUR TIGER PROJECT Division, MYSORE District No of Sample Plots-79 Ared-798.69 in Sq. Kms.

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	D31_35	D36_40	D41_50	D51_60	D61_70	D80p	Total
072 Andegissus latifolia	21.938	10.211	3.842	2.224	1.213	0.506	0.708	0.404	0.000	0.101	41.148
133 bISHELLIA SERRATA	0.404	0.101	0.202	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.708
266 DLLEERGIA LATIFCLIA	1.415	1.213	1. 112	0.708	0.506	0.101	0.202	0.101	0.000	0.000	5.358
285 DIOSPYROS MELANOXYLON	0.404	0.101	0.000	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.607
431 (GENEIA TIELIAEFOLIA	4.651	1.315	0.809	0.101	0.606	0.304	0.404	0.202	0.000	0.101	8.492
504 LAGERSTRIEMIA LANCEOLATA	0.401	0.202	0.000	0.000	0.000	0.000	0.101	0.000	0.000	0.000	0.404
722 PTERICARPUS MRRSUPIUM	1.213	0.606	1.112	0.606	0.101	0.101	0.202	0.000	0.000	0.202	4.145
795 SCHEEICHERA TRIJUGA/OLEOS	0.000	0.000	0.202	0.202	0.000	0.104	0. 101	0.000	0.000	0.000	0.607
858 IECTINA Gramdis	3.943	3.438	3.538	3.640	2.123	2.123	3.235	1.315	0.606	0.404	24.365
866 TERMINLLA CREMLATA	6.268	3.033	3.033	1.415	0.506	0.404	1.315	0.606	0.404	0.000	16.985
869 terhinalia paniculata	1.617	0.304	0.708	0.202	0.304 *	0.202	0.000	0.000	0.101	0.000	3.437
898 VITEX ALIISSIMA	0.000	0.000	0.000	0.101	0.000	0.000	0.000	0.000	0.000	0.000	0.101
RRR REST OF SPECLES	24.433	10.919	3.640	2.528	0.809	0.404	1.112	0.304	0.202	0.202	41.552
	63.389	31.443	18.197	11.829	6.167	4.247	7.381	2.932	1.314	1.011	7.909

SCODE SPECIES NAME	010_15	016_20	021_25	D26_30	031_35	D36. 40	D41 50	D51_60	D61_70	D80p	Total
072 ANOKEIS5US LATIFOLIA	2.356	1.482	1.281	1.007	0.812	0.635	1.183	0.403	0.000	0.165	9.324
133 BOSWELLIA SERRATA	0.037	0.088	0.034	0.036	0.049	0.053	0.053	0.000	0.000	0.000	0.349
266 DALBERGIA LATIFOLIA	0.152	0.143	0.208	0.209	0.176	0.084	0.186	0.070	0.112	0.137	1.477
285 DIOSPYRIS MELANDXYLON	0.013	0.016	0.015	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.053
431 GREWIA TIELIAEFOLIA	0.159	0.199	0.147	0.162	0.280	0.211	0.333	0.174	0.000	0.135	1.799
441 HARDWICKIA BINATA	0.214	0.142	0.185	0.090	0.140	0.116	0.374	0.028	0.584	0.000	1.873
504 LAGERSTRIEEMIA LANCEDLATA	0.012	0.007	0.000	0.000	0.000	0.000	0.042	0.000	0.084	0.113	0.258
722 PTERDCARPUS MARSUPIUM	0.064	0.161	0.282	0.387	0.190	0.165	0.456	0.332	1.023	0.371	3.430
780 SANTALLA ALEAN	0.006	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008
795 SCHLEICHERA TRIJUKA//OLEOS	0.000	0.016	0.020	0.058	0.029	0.038	0.158	0.096	0.214	0.590	1.218
858 TECTONA GRANDIS	0.075	0.204	0.468	0.546	0.641	0.802	1.636	1.206	0.869	0.796	7.264
866 TERMIMALIA CREMLATA	0.773	0.462	0.573	0.526	0.406	0.479	1.144	0.972	0.713	0.483	6.532
869 TERMINALIA PANICXLATA	0.059	0.024	0.114	0.067	0.134	0.102	0.000	0.056	0.090	0.000	0.647
898 VITEX ALTISSIMA	0.000	0.000	0.000	0.016	0.000	0.000	0.000	0.000	0.000	0.000	0.016
RRR REST OF SPECIES	1.917	1.798	1.422	1.425	1.005	1.035	1.654	0.957	1.941	6.515	19.670
	5.857	4.744	4.749	4.538	3.862	3.720	7.219	4.294	5.630	9.305	53.948

ANNEXURE XX
Table showing the Growing Stiok (in lacs cu, otr.) of MYSCRE District

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	D31_35	D36_40	D41_50	D51_60	061_70	D80p	Total
072 andgeissus latifolia	8.241	5.184	4.481	3.523	2.840	2.221	4.138	1.410	0.000	0.577	32.615
133 bOSWELLIA SERRATA	0.129	0.308	0.119	0.126	0.171	0.185	0.185	0.000	0.000	0.000	1.272
266 DALBERGIA LATIFOLIA	0.532	0.500	0.728	0.731	0.616	0.294	0.651	0.245	0.392	0.479	5.167
285 DIOSPYROS PELANOXYLON	0.045	0.056	0.052	0.031	0.000	0.000	0.000	0.000	0.000	0.000	0.185
431 grewia TIELIAEFOLIA	0.556	0.696	0.514	0.567	0.979	0.738	1.165	0.609	0.000	0.472	6.294
441 HARDWICKIA BINATA	0.749	0.497	0.647	0.315	0.490	0.406	1.308	0.098	2.043	0.000	6.551
504 LAGERSTRDEMIA LANCECLATA	0.042	0.024	0.000	0.000	0.000	0.000	0.147	0.000	0.294	0.395	0.902
722 PTEROCARPUS MARSUPIUM	0.224	0.563	0.986	1.354	0.665	0.577	1.595	1.161	3.579	1.298	12.000
780 SANTALUM ALEEM	0.021	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.028
795 SCHEICHERA TRIJUGA/OLEDS	0.000	0.056	0.070	0.203	0.101	0.133	0.553	0.336	0.749	2.064	4.264
858 TECTRNA GRAMTIS	0.332	0.714	1.637	1.910	2.242	2.805	5.723	4.219	3.040	2.784	25.409
866 TERMINALIA CREALLATA	2.704	1.616	2.004	1.840	1.420	1.676	4.002	3.400	2.494	1.690	22.848
869 TERMINALIA PANICULATA	0.206	0.084	0.399	0.234	0.469	0.357	0.000	0.196	0.315	0.000	2,263
898 VITEX ALTISSIMA	0.000	0.000	0.000	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.056
RRR REST OF SPECIES	6.706	6.290	4.974	4.985	3.516	3.620	5.786	3.348	6.790	22.790	68,808
	20.488	16.595	16.612	15.874	13.510	13.013	25.252	15.021	19.694	32.549	188.609

ANNEXURE XXI
Table showing the Growing Stcok per hec. (in cu. air. $)$ of Teak Forest in MYSORE District

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	D31_35	D36_40	D41. 50	D51.60	D16170	D80p	Total
072 ANOGEISSUS LATIFDLIA	3.086	2.359	1.418	1.568	1.327	1.838	4,894	0.000	0.000	0.000	46.481
266 DALBERGIA LATIFOLIA	0.000	0.413	0.411	0.844	0.924	1.932	0.997	0.000	0.000	0.000	5.520
431 GREWIA TIELIAEFOLIA	0.059	0.286	0.382	0.000	1.277	0.000	0.338	0.000	0.000	0.000	2.841
504 LAGERSTROEMIA LANCETLATA	0.158	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.928	0.000	2.086
722 PTEROCARPUS MARSUPIUM	0.086	0.151	0.000	0.325	0.000	1.295	0.000	1.355	0.000	0.000	3.212
795 SCHEEICHERA TRIJUGA/OLEOS	0.000	0.000	0.000	0.508	0.000	0.000	1. 150	0.000	2.463	0.000	4.121
858 TECTONA GRANDIS	0.536	0.727	2.708	3.316	3.629	6.030	8.435	10.053	7.343	8.753	51.530
806 TERMINALIA CRENHLATA	1.159	0.564	1.641	1.417	0.000	0.000	0.000	0.000	0.000	0.000	4.781
B69 TERMINALIA PANICULATA	0.000	0.000	0.143	0.000	0.000	0.588	0.000	0.000	0.000	0.000	0.730
RRR REST OF SPECIES	1.285	1.764	1.760	1.301	1.123	0.511	0.000	0.000	3.557	0.000	11.301
	6.369	6.264	8.463	9.279	8.280	12.194	16.314	11.408	45.291	8.753	102.613

ANHEXURE XXII
Table showing the Growing Stcok (in lacs cu,mtr,) of Teak Forest in MYSORE District

SCODE SPECIES NAME	D10_15	016_20	D21-25	D26_30	D31 35	036_40	D41_50	051_60	D61 70	D80p	Total
072 ANOGEIS5US LATIFOLIA	0.468	0.358	0.215	0.238	0.201	0.279	0.742	0.000	0.000	0.000	2.501
266 DALBERGIA LATIFOLIA	0.000	0.063	0.062	0.128	0.140	0.293	0.151	0.000	0.000	0.000	0.837
431 GREWIA TIELIAEFOLIA	0.009	0.043	0.058	0.000	0.194	0.000	0.127	0.000	0.000	0.000	0.431
504 LAGERSTRIEMIA LANCEOLATA	0.024	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.292	0.000	0.316
722 PTEROCARPUS MARSUPILM	0.013	0.023	0.000	0.049	0.000	0.196	0.000	0.205	0.000	0.000	0.487
795 SCHEEICHERA TRIJUGA/OLEOS	0.000	0.000	0.000	0.077	0.000	0.000	0.174	0.000	0.374	0.000	0.625
858 TECTONA GRANDIS	0.081	0.110	0.411	0.503	0.550	0.914	1.279	1.525	1.114	1.327	7.815
866 TERMINALIA CRERULATA	0.176	0.086	0.249	0.215	0.000	0.000	0.000	0.000	0.000	0.000	0.725
869 terminalia paniculata	0.000	0.000	0.022	0.000	0.000	0.089	0.000	0.000	0.000	0.000	0.111
RRR REST DF SPECIES	0.195	0.268	0.267	0.197	0.170	0.077	0.000	0.000	0.539	0.000	1.714
	0.966	0.950	1.283	1.407	1.256	1.849	2.474	1.730	2.319	1.327	15.561

aNNEXURE XXIII

SCODE SPECIES NAME	D10_15	D16_20	021_25	D26, 30	D31_35	D36_40	D41_50	D51.60	D6: 70	DROp	Total
266 DALBERGIA LATIFOLIA	3.449	1.836	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.284
431 GREWIA TIELIAEF[LIA	0.000	0.822	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.822
722 PTEROCARPUS MARSUPIUM	0.576	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.576
780 SANTALUM ALBUM	0.368	0.384	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.751
866 TERMINALIA CREMLLATA	0.701	0.000	0.000 .	0.000	0.000	0.060	0.000	0.000	0.000	0.000	0.701
RRR REST OF SPECIES	0.234	0.000	0.000	0.000	2.656	0.000	0.000	0.000	0.000	0.000	2.887
	5.325	3.042	0.000	0.000	2.656	0.000	0.000	0.000	0.000	0.000	11.020

Table showing the Growing 5tcok (in lacs cu.atr.) of Bamboo Forest Forest in MYSORE District No of Sample Plots-2 Area-20. 22 in Sq. Kins.

SCODE SPECIES NAME	D10_15	D16_20	D21 25	D26_30	D31_35	D36_40	D41_50	D51_60	D61_70	D8Op	Total
266 DALBERGIA LATIFOLIA	0.070	0.037	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.107
431 GREWIA TIELIAEFCLIA	0.000	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.017
722 PTEROCARPUS MARSUPIUM	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012
780 SANTALUM ALEUM	0.007	0.008	0.000	0.000	0.000	0.000	0.000	0,000	0,000	0.000	0.015
B6t TERMINALIA CRENuLATA	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.014
RRR REST OF SPECIES	0.005	0,000	0.000	0.000	0.054	0.000	0.000	0.000	0.000	0.000	0.058
	0.108	0.062	0.000	0.000	0.054	0.000	0.000	0.000	0.000	0.000	0.223

SCDDE SPECIES MAME	D10_15	D16_20	D21_25	D2b_30	D31_35	D36_40	D41_50	D51_60	D61_70	D80p	Total
072 ANGGEISSt'S LATIFDLIA	2.337	1.451	1.283	0.987	0.793	0.584	1.021	0.424	0.000	0.173	9.054
133 BISLELLIA SERRATA	0.039	0.092	0.036	0.038	0.051	0.056	0.056	0.000	0.000	0.000	0.367
266 DALBERGIA LATIFGLIA	0.137	0.121	0.200	0.181	0.143	0.000	0.150	0.074	0.118	0.144	1.270
285 DIOSPYRLS MELANOXYLON	0.013	0.017	0.016	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.056
431 GREWIA TIELIAEFOLIA	0.164	0.192	0.137	0.170	0.236	0.222	0.312	0.183	0.000	0.142	1.758
441 HARDWICKIA BINATA	0.225	0.150	0.194	0.094	0.147	0.122	0.393	0.029	0.614	0.000	1.969
504 LAGERSTROEMIA LANCEOLATA	0.005	0.007	0.000	0.000	0.000	0.000	0.045	0.000	0.000	0.119	0.176
722 PTEROCARPUS MARSUPIUM	0.060	0.162	0.297	0.392	0.200	0.115	0.480	0.287	1.076	0.390	3.458
780 SANTALLM ALBUM	0.004	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.004
795 SCHLEICHERA TRIJUGA/OLEOS	0.000	0.017	0.021	0.038	0.031	0.040	0.114	0.101	0.112	0.620	$\{.093$
858 TECTINA GRANDIS	0.076	0.182	0.368	0.423	0.507	0.568	1.335	0.810	0.580	0.438	5.290
856 TERMINALIA CRENULATA	0.756	0.460	0.528	0.488	0.427	0.504	1.203	1.023	0.750	0.508	6.647
869 TERMINALIA PANICULATA	0.062	0.026	0.114	0.071	0.141	0.080	0.000	0.059	0.094	0.000	0.647
898 VITEX ALTISSIMA	0.000	0.000	0.000	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.017
RRR REST OF SPECIES	1.957	1.811	1,416	1.440	0.950	1.065	1.740	1.006	1,879	6.851	20.154

ANMEXURE XXVI
Table showing the Growing Stcok (in lacs ca. mitr.) of Miscellaneous Forest in MYSORE District No of Sample Plots-329 Area-3326. 19 in 5q. Kms.

SCODE SPECIES NAME	D10 45	D16_20	D21_25	D26_30	D31_35	D36. 40	D41_50	051_60	M1_70	D8Op	Total
072 ANOLEISSUS LATIFOLIA	7.773	4.826	4.268	3.283	2.638	1.942	3.396				
133 BOSWELLIA SERRATA	0.130	0.306	0.120	0.126	2.638 0.170	1.942 0.186	3.376 0.186	1.410 0.000	0.000 0.000	0.575 0.000	30.114 1.272
266 DALBERGIA LATIFOLIA	0.462	0.402	0.665	0.602	0.476	0.186 0.000	0.146 0.499	0.000 0.246	0.000 0.392	0.000 0.479	1.222 4.223
285 DIOSPYROS MELANOXYLON	0.043	0.057	0.053	0.033	0.000	0.000	0.479 0.000	0.246 0.000	0.392 0.000	0.479 0.000	4.223 0.185
431 GREWIA TIELIAEFCLIA	0.545	0.635	0.456	0.565	0.785	0.738	1.038	0.000 0.609	0.000	0.472	0.185 5.846
441 HARDWICKIA BINATA	0.748	0.477	0.645	0.313	0.489	0.406	1.307	0.096	2.042	0.472 0.000	5.546 6.551
504 LAGERSTROEMIA LANCEOLATA	0.047	0.023	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.396	0.586
722 PTEROCARPUS MARSUPIUM 780 SANTALLM ALBUM	0.200	0.537	0.988	1.304	0.665	0.383	1.597	0.755	3.579	1.297	11.501
795 SCHLEICHERA TRLJUKA/DLEOS	0.013 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013
858 TECTONA GRANDIS	0.253	0.605	224	0.126	0.103	0.133	0.379	0.336	0.373	2.062	3.636
866 TERMINALIA CRENLLATA	2.515	1.530	1.756	23		1.889	4.440	2.654	1.929	1.457	17.594
869 TERMINALIA PANICULATA	0.206	0.086	0.379	0.236		1.676	4.001	3.403	2.495	1.690	22.107
898 VITEX ALTISSIMA	0.000	0.000	0.000	0.057	0.000		0.000	0.	0.313	0.000	2.152
RRR REST OF SPECIES	6.509	6.024	4.710	4.790	3.293	3.542	5.788	3.346	0.000	0.000	0.056
	19.445	15.593	15.334	14.466	12.200	11.163	22.781	13.291	17.373	31,216	825

ANWEXURE XXUII
Table showing the Growing Stcok per hec. (in cu. otr.) of HUNSUR Division, MYSORE District

SCODE SPECIES NAME	D10_15	D16 20	D21_25	D26_30	D31 35	D36_40	D41_50	D51_60	D61_70	D80p	Total
072 ANOGEISSUS LATIFOLIA	1.354	0.755	1. 109	0.307	2.020	0.545	2.823	0.000	0.000	0.000	8.913
266 DALEERGIA LATIFOLIA	0.608	0.669	0.373	0.886	0.000	0.000	0.000	0.000	0.000	0.000	2.536
285 DIISPYROS MELANOXYLON	0.020	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.020
431 GREWIA TIELIAEFOLIA	0.000	0.159	0.000	0.000	0.000	0.000	0.900	0.000	0.000	0.000	1.060
504 LAGERSTRIEMIA LANCEOLATA	0.155	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.155
722 PTEROCARPUS MARSUPILM	0.291	0.000	0.253	0.248	0.000	0.589	1.400	0.000	1.549	0.000	4.331
780 SANTALUM ALBUM	0.111	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.154
795 SCHLEICHERA TRIJUGA/OLEOS	0.000	0.157	0.000	0.000	0.000	0.000	0.000	0.000	2.052	0.000	2.210
858 TECTONA GRANDIS	0.000	0.165	0.792	0.746	0.994	2.184	1.275	2.916	1.268	0.000	10.339
366 TERMINALIA CRENULATA	1.364	0.843	1.433	0.759	0.745	2.079	1.615	1.445	0.000	0.000	10.482
869 TERMINALIA PANICULATA	0.159	0.000	0.000	0.295	0.829	0.980	0.000	1.081	0.000	0.000	3.343
RRR REST OF SPECIES	1.500	1.659	1.788	2.064	0.709	2.250	0.651	1.012	0.000°	0.000	11.833
	5.562	4.450	5.748	5.505	5.497	8.627	8.664	6.454	4.869	0.000	55.374

AINEXURE XXVIII
Table showing the Growing Stcok (in Lacs cu.mtr,) of HUNGUR Division, MYSORE District

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26. 30	D31_35	D36_40	D41_50	D51_60	D61_70	D80p	Total
072 ANGGEISSUS LATIFOLIA	0.246	0.137	0.202	0.056	0.368	0.087	0.514	0.000	0.000	0.000	1.622
266 DALBERGIA LATIFDIIA	0.111	0.122	0.068	0.161	0.000	0.000	0.000	0.000	0.000	0.000	0.464
285 DIDSPYROS MELANOXYLON	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004
431 grewia tieliatfalia	0.000	0.029	0.000	0.000	0.000	0.000	0.164	0.000	0.000	0.000	0.193
504 LAGERSTROEMIA LANCEPATA	0.028	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.028
722 pteracarpus marsupium	0.053	0.000	0.046	0.045	0.000	0.107	0.255	0.000	0.282	0.000	0.788
780 SANTALLA ALBUM	0.020	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.028
795 SCHLEICHERA TRIJUGA/OUEOS	0.000	0.029	0.000	0.000	0.000	0.000	0.000	0.000	0.373	0.000	0.402
858 TECTINA GRANDIS	0.000	0.030	0.144	0.136	0.181	0.357	0.232	0.531	0.231	0.000	1.882
866 TERMINALIA CFEEMLATA	0.248	0.153	0.261	0.175	0.136	0.378	0.294	0.263	0.000	0.000	1.908
869 TERMINFLIA PANICULATA	0.029	0.000	0.000	0.054	0.151	0.178	0.000	0.197	0.000	0.000	0.608
RRR REST OF SPECIES	0.273	0.302	0.325	0.376	0.165	0.409	0.148	0.184	0.000	0.000	2.153
	1.012	0.810	1.046	1.002	1.000	1.570	1.577	1.174	0.886	0.000	10.077

ANNEXURE XXIX
Table showing the Growing Stcok per hec (cu. mtr.) of MYSORE Division, MYSORE District No of Sample 户́lots-38 Area-384. 18 in Sq. Kms.

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	D31_35	D36_40	D41_50	D51_60	D61_70	880p	Total
072 amagissus latifolia	2.009	1.022	1.739	1.592	1.349	1.694	3.070	0.576	0.000	0.000	13.052
133 BOSHELLIA SERRATA	0.040	0.000	0.053	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.092
266 DALbergia latifolia	0.424	0.322	0.506	0.587	0.548	0.468	0.509	0.000	1.021	0.000	4.385
285 DIISPYROS MELAMOXYLON	0.037	0.072	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.108
431 GREWIA TIELIAEFPLIA	0.137	0.288	0.472	0.195	0.302	0.000	0.000	0.000	0.000	0.000	1.394
504 LAGERSTROEMIA LANCEOLATA	0.019	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.764	1.027	1.808
722 PTEROCARPUS MARSUPIUM	0.064	0.140	0.429	0.257	0.340	0.000	1.200	1.116	0.734	0.000	4.280
795 SCHLEICHERA tRIJUGA/CLEOS	0.000	0.075	0.000	0.201	0.000	0.000	0.983	0.872	0.872	5.368	8.470
858 TECTONA GRANDIS	0.072	0.171	0.722	0.464	1.646	0.849	2.929	3.173	3.479	0.975	14.499
866 TERMINALIA CRENLLATA	1.886	1.004	1.343	1.511	1.315	0.792	2.024	4.978	0.050	1.179	13.031
869 TERMINNLLA PANICULATA	0.111	0.070	0.080	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.260
RRR REST OF SPECIES	1.553	1.663	2.028	1.865	1.258	1.859	1.908	1.942	1.508	3.405	18.988
	6.352	4.827	7.372	6.672	6.758	5.662	12.623	9.677	8.475	11.954	80.368

ANNEXURE XXX
Table showing the Growing Stcok (in lacs cu.mir.) of MYSORE Division, MYSORE District

SCDDE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	D31_35	D36_40	D41_50	D51_60	D61_70	D80p	Total
072 AmOEISSUS LATIFOLIA	0.772	0.393	0.668	0.612	0.518	0.651	1.179	0.221	0.000	0.000	5.014
133 BTSWELLIA SERRATA	0.015	0.000	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.036
266 DALBERGIA LATIFOLIA	0.163	0.124	0.194	0.226	0.211	0.180	0.196	0.000	0.392	0.000	1.685
285 DIISPYYRSS MELANOXYLON	0.014	0.028	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.042
431 GREWIA TIELIAEFOLIA	0.053	0.111	0.181	0.075	0.146	0.000	0.000	0.000	0.000	0.000	0.536
504 LALLERSTROEMIA LAMCEOLATA	0.007	0.000	0.000	0.000	0.000	0.000	0.000	$0.00{ }^{1}$	0.292	0.375	0.694
722 PJEROCARPUS MARSUPIUM	0.025	0.054	0.165	0.099	0.131	0.000	0.461	0.429	0.282	0.000	1.644
795 SCHLEICHERA TRIJUGA/OLEOS	0,000	0.029	0.000	0.077	0.000	0.000	0.378	0.335	0.373	2.062	3.254
858 TECTONA GRANDIS	0.028	0.066	0.277	0.178	0.632	0.326	1.125	1.227	1.337	0.375	5.570
866 TERMINALIA CRENULATA	0.725	0.386	0.516	0.580	0.505	0.304	0.778	0.760	0.000	0.453	5.006
869 TERMINALIA PANICULATA	0.043	0.027	0.031	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.100
RRR REST OF SPECIES	0.597	0.639	0.779	0.716	0.483	0.714	0.733	0.746	0.579	1.308	7.295
	2.440	1.854	2.832	2.563	2.596	2.175	4.850	3.718	3.256	4.592	30.876

ANWEXURE XXXI

Table showing the Growing Strok per hec. (in cu, mitr.) of CHAMARANANAGARA Division, MYSGRE District No of Sample Plots-46 Area-465.06 in Sq. Kns.

SCODE SPECIES NAME	D10_15	D16_20	D21_25	D26_30	D3135	D36_40	D41_50	D51.60	D61. 70	D80p	Total
072 Andociscus latifolia	1.834	1.120	1.381	1.087	0.781	1.324	2.507	0.000	0.000	0.000	10.033
266 DALBERGIA LAIIFOLIA	0.146	0.070	0.146	0.000	0.129	0.000	0.291	0.000	0.000	1.030	1.811
285 DIOSPYROS MELANDXYLON	0.022	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.022
431 GRELIA TIELIAEFGLIA	0.249	0.304	0.099	0.515	0.385	1.010	0.609	0.480	0.000	0.000	3.654
441 HARDUICKIA BINATA	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.014
722 PTEROCARPUS MARSUPIUM	0.101	0.082	0.178	0.204	0.125	0.422	0.387	0.989	0.000	0.000	2.508
795 SCHLEICHERA TRIJUGA/DLEES	0.000	0.000	0.000	0.000	0.221	0.000	0.000	0.000	0.000	0.000	0.221
858 TECTONA GRANDIS	0.080	0.113	0.174	0.102	0.135	0.000	0.215	0.000	0.000	0.000	0.820
866 TERMINALIA CREMULATA	0.744	0.344	0.240	0.308	0.606	0.654	1.950	1.108	2.201	2.658	10.813
869 TERMINALIA PANICLLATA	0.011	0.031	0.198	0.204	0.270	0.000	0.000	0.000	0.000	0.000	0.714
RRR REST OF SPECIES	2,314	1.429	1,325	1.869	1.165	$\underline{1.393}$	1.815	2.146	3.863	4.296	21.715
	5.515	3.493	3.761	4.289	3.817	4.803	7.774	4.723	6.164	7.984	52.321

ANNEXURE XXXII
Table showing the Growing Steok (in lacs cuatry) of CHAMARANANGGRA Division, MYCORE District

SCODE SPECIES NAME	010. 15	D16_20	D21_25	D26_30	D31_35	D36_40	D41_50	D51_60	061_70	D80p	Total
072 ANGGEISSLS LATIFOLIA	0.853	0.521	0.642	0.506	0.363	0.616	1.166	0.000	0.000	0.000	4.666
266 DALEERGIA LATIFOLIA	0.068	0.033	0.068	0.000	0.060	0.000	0.135	0.000	0,000	0.479	0.842
285 DIDSPYRDS MELAMDXYLON	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010
431 GREWIA TIELIAEFOLIA	0.116	0.141	0.046	0.240	0.779	0.470	0.283	0.223	0.000	0.000	1.698
441 HARDWICKIA BINATA	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007
722 PTERDCARPUS MARSUPIUM	0.047	0.038	0.072	0.095	0.058	0.196	0.180	0.460	0.000	0.000	1.166
795 SCHLEICHERA TRLJUGA/DLEDS	0.000	0.000	0.000	0.000	0.103	0.000	0.000	0.000	0.000	0.000	0.103
858 TECTONA GRANDIS	0.037	0.053	0.081	0.047	0.063	0.000	0.100	0.000	0.000	0.000	0.381
866 TERMINPLIA CRENULATA	0.346	0.160	0.112	0.143	0.282	0.304	0.907	0.515	1.024	1.236	5.028
869 TERMINALIA PANIClllata	0.005	0.014	0.072	0.095	0.126	0.000	0.000	0.000	0.000	0.000	0.332
RRR REST OF SPECIES	1.076	0.665	0.616	0.869	0,542	0.648	0.844	0.798	1.843	1.998	10.099
	2.565	1.624	1.749	1.995	1.775	2.234	3.615	2.196	2.867	3.713	24.333

ANMEXURE XXXIII
Table showing the Growing Stcok per hec. (in cu. mitr.) of KOLLEGAL Division, MYSORE District No of Sample Piots-165 Area-1668. 15 in Sq. Kms.

SCODE SPECIES NAME	D10_45	D16_20	021_25	D26_30	D3135	D36_40	041_50	05160	061 70	D80p	Total
072 ANOGEISSUS LATIFOLIA	1.913	1.309	1.097	0.783	0.453	0.219	0.175	0.158	0.000	0.000	6.107
133 BCSHELLIA SERRATA	0.057	0.178	0.029	0.075	0.102	0.112	0.111	0.000	0.000	0.000	0.664
266 DALBERGIA LAIIFOLIA	0.000	0.000	0.032	0.023	0.000	0.000	0.000	0.000	0.000	0.000	0.055
285 DISSPYRIS MELANOXYLON	0.000	0.009	0.031	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.041
431 GRELIA TIELIAEFRLIA	0.081	0.127	0.033	0.124	0.175	0.000	0.068	0.000	0.000	0.000	0.608
441 HARDWICKIA BINATA	0.445	0.279	0.387	0.188	0.294	0.244	0.783	0.058	1.225	0.000	3.923
722 PTERICARPUS MARSUPIUM	0.016	0.234	0.242	0.502	0.244	0.103	0.259	0.163	1.807	0.244	3.812
858 TECTONA GRANDIS	0.006	0.027	0.129	0.047	0.066	0.243	0.251	0.000	0.000	0.231	1.000
366 TERMINALIA CREMLATA	0.285	0.199	0.129	0.185	0.088	0.175	0.095	0.284	0.000	0.000	1.439
869 TERMINALIA PANICllata	0.025	0.000	0.059	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.084
RRR REST OF SPECIES	2.305	2.080	1.472	1.210	1.126	0.916	1.623	0.493	2.263	5.618	19.106
	5. 133	4.462	3.640	3.137	2.545	2.012	3.365	1.156	5.295	6.093	36.839

ANNEXURE XXXIV
Table showing the Growing Stcok (in lacs cu.ntr.) of KRLLEGAL Division, MYSDRE District

SCODE SPECIES NAME	D10_15	D16_20	1221. 25	D26_30	D31_35	D36_40	D41_50	D51_60	D61_70	D80p	Total
072 AmdGeissus latifalia	3.191	2.184	1.830	1.306	0.756	0.365	0.292	0.264	0.000	0.000	10.187
133 EDSSUELLIA SERRATA	0.095	0.297	0.048	0.125	0.170	0.887	0.185	0.000	0.000	0.000	1.107
266 DALBERGIA LATIFOLIA	0.000	0.000	0.053	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.092
285 DIOSPYROS MELANOXYLON	0.000	0.045	0.052	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.068
431 GrEWIA TIELIAEFOLIA	0.135	0.212	0.055	0.207	0.292	0.000	0.113	0.000	0.000	0.000	1.014
441 HAPBUICKIA BINATA	0.742	0.499	0.646	0.314	0.490	0.407	1.306	0.097	2.043	0.000	6.544
722 PTEROCARPUS MARSUPIUM	0.027	0.370	0.404	0.837	0.402	0.172	0.432	0.272	3.014	0.407	6.358
858 TECTONA GRANDIS	0.010	0.045	0.215	0.078	0.110	0.405	0.419	0.000	0.000	0.335	1.667
866 terminalia cremulata	0.475	0.332	0.215	0.309	0.147	0.292	0.158	0.474	0.000	0.000	2.401
869 TERMINALIA PANICULATA	0.042	0.000	0.098	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.141
RRR REST OF SPECIES	3.845	3.470	2.456	2.018	4.878	1.528	2.707	0.822	3.775	9.372	31.872
	8.563.	7.443	6.072	5.233	4.245	3.356	5.613	1.928	8.833	10.164	61.453

ANJNEXURE XXXV
Table showing the Growing Stcok per hec. (in cu. mtr.) of BANDIPUR TIGER PROJECT Division, MYSORE District No of Sample Plots-79 Area-798.69 in Sq. Km

SCDIDE SPECIES NAME	010_15	016_20	021_25	D26_30	D31_35	D36_40	04150	051_60	D61_70	D80p	Total
072 ANOGEISSUS LATIFOLIA	3.979	2.441	1.427	1.306	1.046	0.613	1.237	1.160	0.000	0.722	13.930
133 EDSWELLIA SERRATA	0.023	0.012	0.064	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.099
266 DALBERGIA LATIFOLIA	0.240	0.280	0.430	0.380	0.432	0.141	0.400	0.308	0.000	0.000	2.612
285 DILSPYRLS MELANDXYLON	0.021	0.017	0.000	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.078
431 GRENIA TIELIAEFOLIA	0.316	0.256	0.288	0.057	0.491	0.336	0.757	0.482	0.000	0.590	3.572
504 LAGERSTRDEMIA LANCEDLATA	0.008	0.031	0.000	0.000	0.000	0.000	0.186	0.000	0.000	0.000	0.225
722 PTERLCARPUS MARSUPIUM	0.092	0.097	0.352	0.346	0.091	0.126	0.337	0.000	0.000	1.115	2.558
795 SCHEEICHERA TRIJUGA/OLEDS	0.000	0.000	0.086	0.158	0.000	0.166	0.218	0.000	0.000	0.000	0.628
858 TECTONA GRANDIS	0.323	0.654	1.150	1.841	1.574	2.097	4.814	3.083	1.846	2.535	19.919
886 TERMINALIA CREMLIATA	1.140	0.731	1.128	0.790	0.441	0.498	2.336	1.741	1.842	0.000	10.649
869 TERMINALIA PANICULATA	0.110	0.055	0.223	0.108	0.242	0.223	0.000	0.000	0.393	0.000	1.354
898 VITEX ALTISSIMA	0.000	0.000	0.000	0.070	0.000	0.000	0.000	0.000	0.000	0.000	0.070
RRR REST OF SPECIES	1.147	1.522	1.002	1.260	0.561	0.402	1.733	0.745	0.742	12.658	21.771
	7.399	6.098	6. 150	6.356	4.878	4.602	12.018	7.519	4.823	47.620	77.466

ANEXURE XXXVI
 No of Sample Plots-79 Ared-798.69 in Sq. KmS.

SCODE SPECIES NAME	D10_15	D16. 20	D21_25	D2b_30	031_35	D36_40	D41.50	D51_60	861.70	D80p	Total
072 angaisisus latifolia	3.178	1.950	1.140	1.043	0.835	0.490	0.988	0.926	0.000	0.577	11.126
133 boSHELLIA SERRATA	0.018	0.010	0.051	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.079
266 DALBERGIA LATIFOLIA	0.192	0.224	0.343	0.304	0.345	0.113	0.319	0.246	0.000	0.000	2.086
285 DIOSPYROS MELANOXYLON	0.017	0.014	0.000	0.032	0.000	0.000	0.000	0.000	0.000	0.000	0.062
431 GRENIA TIELIAEFRLIA	0.252	0.204	0.230	0.046	0.392	0.268	0.605	0.385	0.000	0.471	2.853
504 Lagerstraemia lanceolata	0.006	0.025	0.000	0.000	0.000	0.000	0.149	0.000	0.000	0.000	0.180
722 PTeracarpus marsupilm	0.073	0.079	0.281	0.276	0.073	0.101	0.269	0.000	0.000	0.891	2.043
795 SCHEEICHERA TRIJUGA//LEES	0.000	0.000	0.069	0.126	0.000	0.133	0.174	0.000	0.000	0.000	0.502
858 TECTONA GRANDIS	0.258	0.522	0.918	1.470	1.257	1.675	3.845	2.462	1.474	2.025	15.909
866 TERMINALIA CREMULATA	0.911	0.584	0.901	0.631	0.352	0.398	1.866	1.391	1.471	0.000	8.505
869 TERMINALIA PANICULATA	0.088	0.044	0.178	0.086	0.183	0.178	0.000	0.000	0.314	0.000	1.082
898 VITEX ALTISSIMA	0.000	0.000	0.000	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.056
RRR REST OF SPECIES	0.916 .	1.216	0.800	1.006	0.448	0.321	1.384	0.595	0.593	10.110	17.389
	5.910	4.870	4.912	5.076	3.896	3.676	9.599	6.005	3.85	14.07	1.8

ANNEXURE XXXVII
Mean No-of-Bamboo Clumps per hectare by Quality \& Clump Size Clas 5

Species	Quality	Clump Size Class			Total
		Large	Medium	5 mall	
BAMGUSA ARLNDINACEA	1	0.786	2.214	5.857	8.857
	3		0.429	0.786	4.215
DERDROCALAMUS STRICTUS	1	7.214	14.427	30.929	52.572
	2		0.074	2.143	2.214
	3	0.071	2.071	18.427	20.571

ANMEXURE XXXVIII
Mean Nuaber of Bamboo Culms per Clump by Quality 8 Its Soundness

Species	Bamboo Quality	Clump Size	Soundmess					Total
			Green Saund	Green Damaged	Dry Sound	Dry Damaged	Decayed	
BAMPUSA ARLNDINACEA	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	SMALL	2.714	4.215	0.286	1.500	0.000	8.714
		MEDIU	5.667	3.333	0.000	2.333	0.000	11.333
		LARGE	32.500	8.500	1.500	1.500	0:000	44.000
		Total	40.881	16.048	1.786	5.333	0.000	64.047
	3	SMALL	16.333	7.333	0.000	0.000	0.000	23.667
		Total	16.333	7.333	0.000	0.000	0.000	23.667
DENDROCALAFUS STRICTUS	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	SMALL	3.121	3.060	0.924	3.606	0.182	10.939
		MEDIU	5.333	5.833	1.433	6.967	1.900	21.467
		LARGE	. 16.250	11.250	0.000	14.167	0.417	42.167
		Total	24.704	20.143	2.357	24.740	2.499	74.573
	2	SMALL	1.250	7.750	0.250	6.125	1.125	16.500
	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	SMAEL	3.231	5.257	0.205	1.872	0.795	11,333
		MEDIU	7.500	10.250	0.250	7.500	1.000	26.500
		Total	10.731	15.507	0.455	9.372	1.795	37.833

ANWEXURE XXXIX

Species	Bamboo Quality	Clump Size	Soundies 5					Total
			Green Sound	Green Damaged	Dry Sound	Dry Damaged	Decayed	
bambusa arlondinacea	111	SMALL	15.896	24.688	1.675	8.786	0.000	51.038
		MEDIU	12.547	7.379	0.000	5.165	0.000	25.091
		LARGE	25.545	6.681	1.179	1. 179	0.000	34.584
		Total	53.988	38.748	2.854	45.430	0.000	110.713
	3	SMALL	12.838	5.764	0.000	0.000	0.000	18.602
DENDROCALAMUS STRICTUS	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	SMALL	96.529	94.643	28.578	111.530	5.629	338.332
		MEDIU	76.750	84.164	20.677	100.527	27.415	309.747
		LARGE	117.227	81.158	0.000	102.201	3.008	304. 173
		Total	290.706	259.965	47.255	314.258	36.052	952.272
	2	SMAL	2.679	16.608	0.536	13.126	2.411	35.360
	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	SMALL	59.544	96.881	3.778	34,479	14.651	208.856
		MEDIU	15.533	21.228	0.518	15.533	2.071	54.882
		Total	75.077	118.109	4.296	50.032	16.722	263.738

ANEXURE XL
Total Nuaber of Culms in Bamboo Area by Quality \& Its Soundness (in '000)

Species		$\begin{array}{r} \text { Clump } \\ \text { Size } \end{array}$	Soundnes 5					Tatal
			Green Sound	Green Damaged	Dry 5ound	Dry Damaged	Decayed	
BAMBUSA ARUNDINACEA	111		208.921	324.474	22.015	115.474	0.000	670.792
			164.905	96.982	0.000	67.884	0.000	329.771
			335.738	87.808	15.476	15.496	0.000	454.538
		Total	709.564	509.264	37.511	198.854	0.000	1455. 101
	3		38.938	17.482	0.000	0.000	0.000	56.420
DENDROCALAMUS STRICTUS	111		5367.495	5262.624	1589.080	6201.626	313.001	18812.954
			4278.805	4679.939	1149.745	5589.804	1524.411	17223.488
			6518.407	4512.791	0.000	5682.887	167.260	16914.652
		Total	16164.707	14455.354	2738.825	17474.317	2004.672	52951.085
	2		27.085	167.907	5.419	132,704	24.375	357.490
	33		1083.582	-1763.041	68.752	627.813	266.619	3800.761
			28.669	386.307	9.427	282.670	37.688	998.743
		Total	1366.251	2149.348	78.179	910.483	304.307	4799.504

ATWEXURE XLI
Table Showing Mean Number of Bamboo Culus per Clump by Quality \& Its Age

Species	Bambeo Quality	Cluap Size	Age of Cula						Total
			Current Year		$2 \& A b$ Season	Dry Sound	Dry Danaged	Decayed	
bambusa arlindinacea	1	STMALL	1.14	1.143	4.643	0.286	1.500	0.000	8.744
		MEDIU	1.67	2.000	5.333	0.000	2.333	0.000	11.333
		LARGE	8.00	6.000	27.000	1.500	1.500	0.000	44.000
		Total	10.810	9.143	36.976	1.786	5.333	0.000	64.047
	3	SMALL	20.67	3.000	0.000	0.000	0.000	0.000	23.667
		Total	20.666	3.000	0.000	0.000	0.000	0.000	23.667
DEMDROCALAMUS STRICTUS	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	SMALL	1.15	0.682	4.348	0.924	3.606	0.182	10.939
		MEDIU	2.63	2.133	6.400	1.433	6.967	1.900	21.467
		LARGE	5.42	1.416	20.667	0.000	14.167	0.417	42.167
		Total	9.201	4.231	31.415	2,357	24.740	2.499	74.573
	2	SMALL	0.75	1.375	6.875	0.250	6.125	1.125	16.500
	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	SMALL	5.08	1.872	1.539	0.205	1.872	0.795	11.333
		MEDIU	10.25	3.250	4.250	0.250	7.500	1.000	26.500
		Toial	15.327	5.122	5.789	0.455	9.372	1.795	37.833

Table Showing Mean Number of Bamboo Culws per Hectare by Quality $\&$ Its Age

Species	Bamboo Quality	Clump Size	Age of Cula						Total
			Current Year	$\begin{array}{r} 1-2 \\ \text { Season } \end{array}$	$2 \& A b$ Season	$\begin{gathered} \text { Dry } \\ \text { Sound } \end{gathered}$	$\begin{array}{r} \text { Dry } \\ \text { Damaged } \end{array}$	Decayed	
BAMEUSA ARINDINACEA	111	SMALL	6.69	6.695	27.195	1.675	8.786	0.000	51.038
		MEDIU	3.69	4.428	11.807	0.000	5.165	0.000	25.091
		LARGE	6.29	4.716	21.222	1.179	1.179	0.000	34.584
		Tolal	16.673	45.839	60.224	2.854	15.130	0.000	110.713
	3	SMALL	16.24	2.358	0.000	0.000	0.000	0.000	18,602
DENDROCALAMUS STRICTUS	111	SMALL	35.60	21.094	134.479	28.578	111.530	5,629	338.332
		MEDIU	37.99	30.777	92.345	20.677	100.527	27.415	309.747
		LARGE	39.08	10.215	149.092	0.000	102.201	3.008	304.173
		Total	112.669	62.086	375.916	49.255	314.258	36.052	952.272
	2	SMALL	1.61	2.947	14.733	0.536	13.126	2.411	35.360
	3	SMALL	93.56	34.459	28.362	3.778	34.479	14.651	208.856
	3	MEDIU	21.23	6.731	8.802	0.518	15.533	2.071	54.882
		Total	114.792	41.230	37.164	4,296	50.032	16.722	263.738

ANNEXURE XLIII

Species	$\begin{aligned} & \text { Bamboo } \\ & \text { Quality } \end{aligned}$	Clump Size	Age of Culm						Total
			Current Year	$\begin{array}{r} 1-2 \\ \text { Season } \end{array}$	28 Ab Season	Dry Sound	Dry Damaged	Decayed	
BAMEISA ARINDINACEA	111		87.98	87.992	357.423	22.015	115.474	0.000	670.792
			48.51	58.177	155.179	0.000	67.884	0.000	329.771
			82.64	61.982	278.920	15.496	15.496	0.000	454.538
		Total	219.135	208.171	791.522	37.511	178.854	0.000	1455.101
	3		49.27	7.152	0.000	0.000	0.000	0.000	56.420
DENDROCALATUS STAICTUS	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		1979,48	1172.932	7477.705	1589,080	6201.626	313.001	18812.951
			2112.55	1711,355	5134.844	1149.745	5589.804	1524.411	17223.482
			2172.93	588.005	8290.261	0.000	5682,887	167.260	16914.652
		Total	6264.959	3452.272	20702.810	2738.825	17474.317	2004.672	52951.085
	2		16.25	27.794	148.951	5.419	132.704	24.375	357.490
	33		1702.68	627.813	516.132	68.752	627.813	266.619	3800.761
			386.31	122.490	160.179	9.427	282.670	37.688	998.743
		Total	2088.985	750.303	676.311	78.179	910.483	304.307	4799.504

ANMEXURE XLIV
Bambion Stock ('000) Tonnes

Species	Bamboo Quality	ClumpSize	Curreny Year				One to Two Season			Over Two Season				
			Sound	Danaged	Total	Sound	Damaged	Total	Sound	Damaged	Total	$\begin{aligned} & \text { Dry } \\ & \text { Sound } \end{aligned}$	$\begin{gathered} \text { Dry } \\ \text { Damaged } \end{gathered}$	Total
BAMBUSA ARUNDINACEA	111	LARGE	0.325	0.037	0.362	1.070	0.025	1.095	4.236	0.689	4.924	0.000	0.000	6.382
		MEDIUM	0.235	0.000	0.235	0.000	0.441	0.141	1.047	0.336	1.383	0.000	0.000	1.758
		SMALL	0.319	0.053	0.372	0.133	0.146	0.279	0.696	0.585	1.283	0.053	0.140	2.126
		Total	0.879	0.094	0.969	1.203	0.312	1.515	5.979	1.610	7.588	0.053	0.140	10.265
	3	SMALL	0.165	0.037	0.202	0.023	0.006	0.029	0.000	0.000	0.000	0.000	0.000	0.231
		Total	0.165	0.037	0.202	0.023	0.006	0.029	0.000	0.000	0,000	0.000	0.000	0.231
dendrocalamus strictus	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Large	8.507	0.000	8.507	0.583	0.851	1.374	16.490	7.983	24.473	0.000	5.562	39.915
		MEDIUM	6.910	0.681	7.591	4.759	1.309	6.068	5.759	7.510	43. 269	2.251	5.471	34.650
		SMALL	6. 121	0.816	6.937	1.546	2.540	4.056	13.568	7.855	21.423	3.114	6.044	41.572
		Total	21.538	1.497	23.035	6.829	4.670	11.498	35.817	23.348	59.165	5.363	17.077	116. 337
	2	SMALL	0.064	0.000	0.064	0.024	0.048	0.069	0.021	0.281	0.302	0.011	0.130	0.575
	3	MEDILM	0.959	0.277	1.236	0.111	0.184	0.295	0.037	0.295	0.332	0.018	0.277	2.158
		SMALL	3.064	1.801	4.865	0.875	0.791	1.666	0.303	0.895	1. 198	0.135	0.614	8.478
		Total	4.023	2.078	6. 100	0.986	0.976	1.962	0.340	f. 198	1.530	0.153	0.891	10.636

ARMEXURE XLV
Table Showing Dry Weight Equizalent of Bamboo Stock ("000) Tonnes

Species	Bamboo Quality	Cluap Size	Curreny Year				One to Two Season			Over İwo Season				Total
			Sound	Damaged	Total	Sound	Damaged	Total	Sound	Damaged	Total	Dry Sound	Dry Damaged	
BAMEUSA ARUNDINACEA	111	LARGE	0.133	0.015	0.148	0.521	0.010	0.532	1.850	0.319	2.170	0.000	0.000	2.850
		MEDIM	0.096	0.000	0.076	0.000	0.058	0.058	0.413	0.130	0.542	0.000	0.000	0.696
		SMALL	0.131	0.022	0.152	0.054	0.060	0.114	0.280	0.239	0.520	0.022	0.057	0.865
		Total	0.359	0.037	0.397	0.576	0.128	0.703	2.543	0.688	3.232	0.022	0.057	4.411
	3	SMALL	0.068	0.015	0.083	0.009	0.002	0.012	0.000	0.000	0.000	0.000	0.000	0.094
		Total	0.068	0.015	0.083	0.009	0.002	0.012	0.000	0.000	0.000	0.000	0.000	0.094
DENDROCALANUS STRICTUS	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	LARGE	4.383	0.000	4.383	0.270	0.438	0.708	8.495	4,143	12.608	0.000	2.866	20.564
		MEDIUM	3.560	0.351	3.911	2.475	0.674	3.149	2.967	3.881	6.848	1.160	2.819	17.886
		SHALL	3.154	0.420	3.574	0.804	1.323	2.127	6.990	4.047	11.037	1.603	3.114	21.455
		Total	11.076	0.771	11.867	3.549	2.436	5.984	18.452	12.041	30.493	2.763	8.798	59.906
	2	SHALL	0.033	0.000	0.033	0.011	0.025	0.036	0.011	0.145	0.156	0.005	0.067	0.296
	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	MEDIUM	0.494	0.143	0.637	0.057	0.095	0.152	0.017	0.152	0.171	0.010	0.143	1.112
		SmALL	1.578	0.928	2.506	0.451	0.408	0.857	0.156	0.462	0.618	0.069	0.317	4.369
		Total	2.072	1.070	3.143	0.508	0.503	1.011	0.175	0.614	0.789	0.079	0.459	5.481

Field Form-3

Total No. of Bamboo Clumps	Total No. of Trecs
$71-73$	74.76

Job No.	Card Design	Map Sheet No.	Grid No.	Plot No.
$1-3$	$4-5$	$6-11$	$12-15$	16

SPECIES		opoj selveds	菏			芯	E	
	17-18	19.21	22	23-25	26-28	29.30	\|l	31
						-		

FSh S2-EAMgALORE

Job No.	Card Design	Mas 8heat No.	Orid No./ Inter Sectional No	Plot Mo.
$1-2$	$4-5$	$0-11$	$12-18$	16.
-				

BAMBOO ENUMERATION FORM
Field Form 7

Map sheet Number	Grid No.l Inter Sectioníl No.	Plot Number
$6-11$	$12-15$	-16

FORM
 BAMBOO WEIGHT

S. I. S. Z. Bangalore.

Job Number	$C_{\text {ard }}$ Design

Field Form No. 8

[^0]: Source : Statistical abstract of Karnataka, 1991-92.

