GOVERNMENT OF INDIA pinistry of agrigulture a irrication (DEPARTMENT OF AGRICULTURE)

REPORT ON
I he Forest Resources of Manipur

PREUNVESTMENT SURVEY OE FOREST RESOUPCES DEHRA DUN. 19^{76}

GOVERNMEINT OF INDIA
 `MINISTRY OF AGRICULTURE \& IRRIGATICN
 (DEPARTMENT OF AGRICULTURE)
 REPORT ON
 THE FOREST RESCURCES OF MANIPUR.

DEHRA DUN
1976.

PREFAGE

Manipur State, although rich in bamboo and forest resources, had no reliable data even with regard to the peragatage of forest area versua the total area of the State which is 22,366 sq. km. The general impression was that the percentage of forest area is rather limited. Since bamboo is a conventional raw material for paper and pulp industry, and the State is Industrially backward, it was decided that Preinvestment Survey of Forest Resources work be started in this State so as to i dentify surplus resources, if available, for industries. This aurvey work was, therefore, undertaken on top priority basis as a part of the intensification programme of forest suriteys in the North-Eastem region of the country. The Central Zone team of Nagpur of the Pre-Investment Survey of Forest Resources was specially dram for this work and a tight time bound programme was entrusted to them.

The gurveys has revealed some very interesting features with regard to forestrys It is a matter' of surprise even for the Forest Department of the State to leam that the percobtage of total forest area in comparison to the geographical area of the State is 67.76% and surprisingly enough, out of the total area under forests.more than 50% is under tree forests and nearly 22\% is under baiboo brakes. This reflects rather a very good picture in the forestry sector, if motake the averages of the country as a whole.

- The potential anmal out thiat has been caloulated has brought out soine very bright featares because the total annual aut with regard to broad-ieaved species is assessed at $110,468 \mathrm{~m}^{3}$ of plywood quality timber, $40,731 \mathrm{~m}^{3}$ of sam timber, $9,875 \mathrm{~m}^{3}$ of poles and $407,928 \mathrm{~m}$ of palpwood and fial, besides coniferous wood to the tune of $35,804 \mathrm{~m} 3$ per year, is avallable. Total bamboo yield expected annually is of the order of 14.48 lakhs tons (air dry).

Estimatrs of local consumption were al so made and it has been found that this can be assessed at 2,$90 ; 000 \mathrm{~m}^{3}$ firewood, $30,700 \mathrm{~m}^{3}$ timber and poles and 1,61,000 tons (air dry) bamboos. On the basis of this it has been estimated that there wili be a surplus of plywood class timber $110,006 \mathrm{~m}^{3}$, about $10,000 \mathrm{~m}^{3}$ of saw timber, approximately, 11, $7,30, \mathrm{~m}^{3}$ of pulpwod from broad-I eaved species and $23,948 \mathrm{m3}$. of pine timber and $9,063 \mathrm{~m}^{3}$ of plne pul pwood and 12.87 lakhs tons of bamboos.

Fiom these surpiuses a very rosy incustrian potential is refleotéd but as a mo deat start it can safely be recommended that feasibility studes may be organd sed with regard to the following :-

3. | Integrated Fulp \& | 400 tons per | 400 tons hardwood |
| :--- | :--- | :--- |
| Paper/Newsprint mill. | day of news | Plus 390 tonnes |
| | printor 250 | bamboo per day or |
| | tons per day | 600 tons of bamboo |
| | of writing \& | per day. |
| | printing | |

All this has revealed a fantastic pictare and indicates a big potential for industrial development in an essentially tribal region of the country.

It must be placed on record that the Gentral Zone team of the P.I.S. headed by Shri J.J. Dutta, Zonal Coordinator, Gentral Zone and assisted by $S / S h r i S$. Pramesh wamppaind $R_{4} B$. Joshi Deputy Conservator of Forests did commendable work in - doing this work under very difficult circumstances. They also followed the schedules very cereflully and brought the work to a complete success and prodiced excellent results, which were not known to anyone so far.

Opportunil ty has al so to be taken to thank S/Ehri S.M.Kri shastry, Ghief Secretary, Manipur; the Police organization of Manipur, who were very: helpful in., assisting our field crew to camp in the out of the way places andmany a times in the camps of tho outposts of the Police and the establi shments of the B.S.F. and the Gommandants of Manipur Rifles, Assain Fifles etce
: Special thanks are due to Shri B.S.K.Shama, Gonservator of Forests and to all his officers and staff who were very cooperative Without whose cooperation this work could not have been completed.

* The Botany Branch of the Forest Research Iristitute, Dehra Dun i dentifi ed the leaf specimens collected by our team as a result of which we go"t the botanical pames of the various species. Similarly, the Mensuration Branch of the F.R.I sent a party with the Barr \& Stroud dendrometer which helped us in getting the polumes of standing trees as wercould not fell the trees due to objecticns by the tribalso

We are also deepyyindebted to Dr. D.V.Bhalkar, Professoriof Agricultural-Chemistry, Agriculture College, Nagpar, for permitting ourr organization to use the autoclaves for oyen drying of bamboo specimens. and the wefforment etc. "

Dated: 28/12/1976.

[^0](1)
ACENOULEDGEMENTS
The Central Zono toam nf the Pre-Investraent Survey of Forest Res urees wish to place on record their gratitude to the officers of Manipur State for their kind help and guidance in the execution of our work.

Shri S.M. Krishnatry, I.A.S., Qhief Socretary, Manisur took persongl interest in our work and the safety of our field crew.

The D.I.G. Police, Man ipur, the D.I.G., C.R.P., the D.I.G., B.S.F., the Commandants Manipur Rifles, Assan Rifles were all very helpful and permitted our field crew to camp in their outpos-ts when on field work.

The Frrest Department, headed by Shri B.S.K. Sharma, I.F.S., Conservator of Forests and all his officers and staff went all the way to give us all the cooperation and help that they could. Cur stay in the base carap in the premises of the T inber Treating Plant a-t Mantripukhri was made very comfortable by Shri Brij Mani Singh, Officer-in-charge of the Plant. He also helped us ivith the weighments of the bamboo samples for calculating dry weight.

The Botany branch of the F.R.I., Dehra Dun ident ified the Ieaf specimens collected by us from Manfpur forests, and gave us their botanical names. The Mensuration branch sent their party with the Barr \& Stroud dendrmeter to give us volumes of standing trees as we could not fell trees (due to objections by the tribals). These data have been used by us to derive volume equations for the species.

We are also deeply indebted to Dr. D.V. Bhalkar, Professor of Agricultural-Chemistry, Agriculture College, Nagour for permitting us the use of autoclaves fer oven drying of bamboo specimens and their weighment.
J.J. Dutta

Zonal Grnidinator.

Although the state of Maninur has abundant forest wealth, quantitative information on then was meagre. The central Zone team of Pre-Investment Survey of Forest Resources was asked to tackle this State as a rusin job.

The total goograrhical aiea of state is $22,366 \mathrm{sq}$. kms.取evations vary from 4003000 metres. Climate range is from cocl to tropical. Rainfall is fairly hoavy. Apart from settled cultivation in the valleys, there is a largo incidence of ${ }^{\dagger}$ Jhum ${ }^{\text { }}$, by Naga \& Kuki tribes.

Vegetation is somi-overgreen, sub-tropical wot hills, Pinus kesiya forests. Wet temperate forests, and T eak Gurjan forests, each quite distinct. Bamboo brakes are extonsive, as a result of jhum cultivation.

Legal status of the forest is fluid. The tribal councils clair ownership even over Reserved Forests. Menagement is in a very primim tive stage. Yield control etc. are not practicea. Greatest damage to forest is caused by jhum.

Stratification of the sampling frame was done by helicopter recce. Area assessment is also based n the same. Landuse, vegetation and Forest types were identified in helicopter recce. Photointertation helped only in landuse and vegetation assessment, and is based on 8 year ald 1:60,000 photos.

Tree forests occ-ur over 7621. $14 \mathrm{sq}. \mathrm{~km}_{\mathrm{m}}$. Bamboo brakes over 3268.43 mq . km. Annuel jhum area is 1832.08 sq. km.

Pilot survay was done to determine variance 'within stratum' and number of plots for required precision $\pm 10 \%$ at 95% probability level were assessed. However, due to inaccessibility and onset of . rains, only a little more than half the number could be sampled. Precision levels have been worked out for each iter in the data tables. The S.E. for total timber was 10.4 , and for forest area was 1%.

The sampling design was a stratified randm sampling from
 a O. 1 ha. square plot. Both trees and baraboos were studied on the plot.

The wet Tomporate forests were found to have maximum volume - per ha. i. e. $123.150 \mathrm{~m}^{3}$, followed by Semimevergreen $98.095 \mathrm{~m}^{3}$, wet hills - $90.720 \mathrm{~m}^{3}$. Teak Gurjan - $71.392 \mathrm{~m}^{3}$, and Pine $-60.001 \mathrm{~m} / \mathrm{ha}$. The open forssts under these forest types show a stocking of between 4 to $14 \mathrm{~m}^{3} / \mathrm{ha}$, and are unworkable. The average stocking of muli bamboo is 10827.4 culms/ha. and of clump forming bamboos is $1008.77 \mathrm{culms} / \mathrm{ha}$. Green weight by dianeter classes and driage factors have been assessed.

The potential annual cut is based on Snythies' safeguarding formula. Felling cycle is taken as 30 years and 't' i.e. time for passing from Class II to Class I is taken as 25 or 30 yoars, depending on forest type.

The total ennual cut of broad leaved trees is assessed as $1,19,468 \mathrm{~m}^{3}$ of plywood size timber; $40,731 \mathrm{~m}^{3}$ of saw timber; $9875 \mathrm{~m}^{3}$ of poles, and 4,07,928 m^{3} of pulpwood \& fuel. Total coniferous wood is $35,80 \% \mathrm{~m}^{3}$ per year. Totel bamboo yield expected annually is 14.48 lakh tonnes air dry (10% moisture).

The \exists ocal wood and bernboo consumption is assessed as
2,90,000 m^{3} firewood, $30,700 \mathrm{~m}^{3}$ timber and poles and 1,61,000 tonnes (air dry) bamboo.

The total cost of the survey was Rs. 3,90,605.74 or Rs. 25.77 per sq. km. of forest area.

TABLE OF GONTANTS

Contents
(iv)

(v)

(vi)
 LI ${ }^{\circ}$ TH AOPENDICES

(viii)

(x)			
Appendix number Description		Page number	
XIII-e	Table 6.1.5. Vegetation-Tree forests, Forest type - Tear - Gurjen Distribution of total volume by diameter classes and species.	-•	138
XIV - a	Table 6.2.1. Vegetation - Open forest, Forest type - W w tomperate Distribution of total volume by diamoter class-es and species.	-•	139
XIV - b	Table 6.2.2. Vegetation - Open forest, Forest ty-pe - Pine Distribution of total volume by diameter classes and species.	\cdots	140
$X I V-c$	```Table 6.2.3. Vagetation-open forest, forest type - Wet Hills Distribution of total volume by diameter classes and species.```	-•	141
$X V-a$	Table 7.0 Bamboo survey results	-	142
XV - b	Table 7.1. Distribution of No. of culms/he. by age and soundness	-*	143
$X V-c$	Table 7.2. Bamboo dry weight/ha, in tonnes	-•	144
$X V-d$	Table 7.3. Arce claculation for clump forming bamboo.	-	145
XVI	Cost of survey.	.	146

I. Location Map on $1^{\prime \prime}=150$ miles scale indicating the location of the survey area under repert.
II. Map of the Project area on $1^{\prime \prime}=A_{\text {files }}$ miles (After Map 1) scale showing the existing and prooosed roads.
III. Map on $1^{\prime \prime}=32$ miles showing the physingraphy of Manipur.4
IV. S Dingrayt No. 1 Illustration showing the layout of the . 21 (grids at $1^{\frac{1}{4}} \mathrm{x}$ 1-1/2 for a $\frac{1}{2}$ " sheét
V. Diagram No. 2,3 \& 4-Illustrations showing 23 layout of the sample plot, sample studies for clump forming and non-clump forming bamboos and tree species.


```
    GHAPTER - I
INTRODUCTON
```


1. 1. Oritgin of Project

Manipur is an isolated, hill bound, frontier State in North Eestern Part of India adjoining Burma (See Map No. 1). As this part of the country. lacks in a dependable road or other maans of communcation which constituto an important infrastructuro for cconomic dovolopment, tho paco of progress in the region in goneral and Manipur in particular has boon vory slow, over tho yoars. Thorefore, tho Govarnmont of India with a view to giving priority for the economic dovclopmont of the rogion, wantod to know the 'forost rosourco' picture. Tho assossmont of forost resourcos in which this rogion abounds, was allottod to the Gontral Zonc tan of tho Proinvostmont Survoy of Forost Resources Projoct, in a mooting hold on 4-7-1974 under tho Chalmenship of Inspoctor Gonoral of Forosts at Now Dolhi.

1.2. Olvicctives:

Tho main objoctive of tho survoy were to assoss tho wood and bomboo potantial to oxamine the possibility of ostablishing forest basod industries in the Stato at tho oarliast." In pursuenco of this'docision, tho survoy work in Manipur was takon up from 1st March, 1975, aftor tho Gontral Zono toam was froo from tho fiold work in Tripura which was conductod fron Novorbor 1974 to Fobruary 1975.

1. 3. Past studios:

No studics of any kind have boon dono in tho past to assoss tho growing stock: for tho wholo of stato. Tho vory ownorship of tho forosts boing undor dispute, tho oxact aroa under forost wes also not known. Howevor, tho Stato Forost Dopartment has proparod two working plans. The ono for the Roscrvod Forests of Wostorn Forest Division, covoring an area of 324.26 Sq. Kms., was basod on tho onumarations carriod out in $4^{\prime \prime}$ diameter classos. Tho socond plan for tho Rosorvod and Protoctod forosts of Eastorn Forost Division, covering on aroa of 318.56 sq. kas. was basod on stock-maps on 1 y .

A rapid survey of Muli bamboo rosources was carriod out by tho State Forost Dopartmont in the yoar 1972. Tho survoy was dono by a rough stockmapping of tho bonboo aroas into threo strata and thon taking a fow samplos fron oach stratur and counting the numbor of bamboos bynspocios, age otc.

Tho total aroa undor bamboo in this survoy aroa was 1470 sq. kms. in a gcographical area of 5523 sq . kms. Tho avoreco no. of kuli bamboo por acro in puro bamboo stratum variod from 4,500 to 5,500 ; in mixad rich bamboo forosts from 1,270 to 2,250; and in mixod poor bamboo forosts from 500 to 750 . Tho avorago waight of a muli bamboo (dry) was takon as 2.5 kg . Ono gixth of tho total growing stock was considorad as annual yiold which was assossod as 0.7 million (air dry)tonnos.

1．1．Inplonontation：

Maps of Manipur Stato wero not available aithor with tho M R I．Q．e． Dohra Dum or with tho Eastorn Circlo of Smroy of India at Galcutta．After． a protractod procoduro of Dofonce－clecranco otc．，．．．tho maps woro issuod by tho．Army Map Dopot trimping off 1.5 km ．along tho intormational（Burma） bordor．Tho maps were old（aditions of 1932）and woro on $\frac{1}{2}$＂scalo containing．．．． very littlo dotails．Tharo was no altometive but to uso tho same．Tho fiald partios aftor－comploting tho work in Tripure movod to Menipur and establistraf．．．－ tho baso camp in tho promiscs of Timbor Troating Plant at．Mantripukri，Irphal．－ on 1st March．1975．

Efforts woro mado to procuro tho acrial photographs of Manipur from 73 party of Survoy of India for intorprotation and study beforo starting of tho flold work．Tho photographs worc not roadily evailablo．Henco tho Holicoptor of tho Projact was mado full uso of for aroa calculation and stratification fron 6th Mrach，to 25th March 1975．For this purposo，the total arca was dividad into grids of If minuto intorval and tho intorscotion points of grids wore studicd for stratification of land use，vocotation and forcst type．In oach flight 3 intorscetion points，ono right bolow the aircraft ond tho othor two on oithor sido at ovory $1 \frac{1}{4}$ i intorvals woro sturied by a crow of 3，no sitting with tho pilot and tho othor two sitting on oithor side at tho roar．

A pilot sumpoy was carriod out by solocting cortain no．of random plots，in oach straturn to arrivo at tho exact no．of total plots to bo studicd for tho ontiro aroa．Each plot wes O． 1 hoctaro in oxtont and was laid at tho intorscctions of grids．Each grid of 1表＇roprosontod an area of 4.8855 sq．lm．A procision of $\pm 10 \%$ et 95% probability for tho total volumo was aimod ot．For this a total of 350 grids woro to bo tacklod ovor tho ontiro aroa．Eight fiold pertios oach consisting of 1 Junior Tochnical Assistant， 1 Doputy Ranfor and 2 Fioldmon woro formod and doployod to difforont parts of tho stato．Rogular fiold work commoncod in the lest wook of March 1975 and was complotod in Juno 75．Tho implarmontation of tho worls was in some cascs mado difficult by tho hostilc attitudas of tho hill pooplo who considorod our work hs a prolude to loss of thoir rights ovor the forcst produce．But in somo casos，espocially amonfst tho cduceted，tho bonofits oxpocted from industrial dovolopmonts worc bettor approciatod and our partios woro holped and assurod fuil cooporation．

In onc caso on $7 y$ ，one perty was attackot at night ond two of the nombers of the istaff woro injured and othors shockod．Tho mettor was takon up with the administration and stops woro irmediatoly takon to provent any recurronco of such inciconts and to boost tho moralo of tho field staff who had boon out in the ficlel continuously for ovor six months at a strotch．

Howover，inspito of this sonsitivity tho ficld pertios took the wholo work as a challongo and workod with a lot of vigour ond onthusi⿱亠䒑十纟ism． From tho boginning of May 1975，thero wore intormittont rains，which impodod tho spoced of tho work considerably besidos causing innumorablo difficultios to fiold crow，as they had to contond with an army of looches aftor onsat of rains，and axtromo cold，as soric of than hed to work at 2000 to 2500 motros olovation．Braving all thosc impodinonts，tho ficla staff continued to work with Groat dodication and by tho and of Moy 1975， 202 gricas ware tacklod， comploting more than 50% of tho roquirod no．of Erids in all the strata．

At this staro it was docided to closo tho work oxcopt the volumo data work - Barr and Stroud carried out in collaboretion with tho F.R. I. mensuration work, although it was apparant that the dosircd procision levels may not bo achievablo with this snellor number of samplos. It was also found inpossiblo to foll any troos whatsoovor for volume studios as the local pooplo who clainod rights over tho forests invariebly objocted to any such follines. Even barboo follines for waight semples was not cillowed in ramy casos, and in onc instanco, the Dy. Consorvator of Forosts in-charigo who porsonally met tho local popio for this purpose but received a cold shouldor.

The essossment of volume and utility broak-up wes thon ettonptod with Barr and Strjud Dondromotor by a monsuration party from tho Forost Roscarch Instituto, but this instrumant has scrious limitations in ceso of broad loaved spocios and ospocially in donse ovor jroon forosts with poor visibility. It was finally docidod to apply the volumo data fron Tripura Survoy for broad loavod spocios and dorivo cquetion for Pinus kosiye from the dontronctor rondings. This was not the bost arrengoment, but in view of the absonce of any othor altomativo we had to be contentod with this.

Tho sampling crrors havo boen assossod, but no indication is possiblo of the systonatic orrors due to adoption of volumo oquations from a difforont erce, albat sinilar in some rospocts. Tripura forosts do not havo tho Wot Tonporato type, thourt Monipur has a sizooblo aroa umdor it. Tho uso of Tripura volumo tallios will thoroforo lond to m undor ostimetion which is alright bocauso it is safor.

$$
\begin{gathered}
-5- \\
\text { GHAPTER - II } \\
\text { GPNERAI DESCRTPTION OF THE AREA }
\end{gathered}
$$

2.1. Physical Description:

Manipur State is an isolated, hill bound and geographically a distinct entity. It is bounded on the Iforth by the Naga Hifils of Nagaland, on the East by Somra Tract and upper Chindurin areas of Burma, on the South by the Chin Hills of Burma and Mixo Hills of Mizoram, und on the west by the Cachar and north Gachar Hills of Assam.

The entire State of Manipur has been considered as a unit for assessment of Forest Resources. The tract dealt with lies between $94^{\circ} 30^{\mathrm{t}}$ and $94^{\circ} 78^{\circ}$ East Iongitude and $23^{\circ} 83^{\circ}$ and $25^{\circ} 68^{1}$ North latitude.

The principal rivers in the catchment are (1) the Imphal (Manipur) river draining the Manipur valloy, the hills imediately surrounding it, and also the southern hills ond (ii) Barak river draining the northerm and the western hills. The Imphal river flows through the southern hills into Ghindwin river of Burma and Aarals flows through Cachar Hills to join the Surma river which drains in to the Iowor Brahmaputra.

2.1.1. 1 rea

The area of the state is $22,366 \mathrm{~km}^{2}$. of which $1,813 \mathrm{~km}$. from the broad central valloy of Mani pur, tho romaining arca consisting of hilly and momtainous terrain, the highest of which rises upto 3000 motros above sea level. The Contral valley has an avorage altitudo of 850 metres, draining from North to South. The valloy of Manipur as one approachos from the air can be seen dottod with lakes and marshos, the largost of thom being tho Loktak Lake about 12 lm . in length and 8 km . in width, which incidontally is the refugc of the famous and fast dwindling of doers tho nbrow antlerod decr" (Thamin).

2.2. Geolory

- Not much is known about the provalent geological status of this part of tho world in onciont times, but in the upper tertiary poriods, a shallow lako is thought to havo covered, what is now the contral valloy of frphal, a great part of which is till under wator forming tho Loktak Lake.

No dotailed Geological survey has beon carriod out in the area except for travorso mapping by earlior workors like R.D. Oldam (1835) and briof reports of Survoy of India in 1943-44. Tho Imphal valley consists of alluvium with the argillaceous rocks of Diseng serios as underlying rocks. The-greator part of the hills on the Wostorn sido has Eocone sand-stono, slatos and shalos as underlying rocks; resultant soil boing clayry loam, doep in places. The rost of the hills surrounding tha Imphal valloy have argillaccous rocks yiolding alluvium that fills the valloy. Pure calcaroous rocks are also met with towards the east on the Oinamlong hills and laterite out crops can be seen towards south oast at Mbreh. Brino wells arc met with around Ukhrul. Therc are also indications of oil in the frphal valley.

2.3. Climatc

Manipur State cloarly falls within tho itonsoon belt of India. The climato in the wostorn part can bo callod tropical as also in the south oast cornor around Morch, but favourable elovation, pattorn of procipitation, and abscnco of frost, ozcept on high hill tops, has rosultod in a climato of Sub-tropical type in tho rost of tho aroa, with distinct wintor, warm and rainy scasons. Tho poriod from Novamber to February is charactorisod by low tomporature and hoavy dow at night. Frost occurs on wintor nights at high elovations only. In April \& May the day tomporature risos but oitton cools off towards the afternoons becauso of thunderstorris and light showers. The poriod from Juno to Soptombor is charactorisod by hoavy rain fall. The rango of tomperaturo for the Stato is $2.3^{\circ}\left(30^{\circ} \mathrm{F}\right)$ to $34.5^{\circ} \mathrm{C}$ ($94^{\circ} \mathrm{F}$). The averago rainfall is about 131 cm . (51.6").

2.4. Innt Use:

Lend use dotails wore not available for tho stato as a wholo. But samo information is available for the Imphal valley. According to villago records, the total geographical aroa of the valley in 1957-58, was 139,862. 31 hectares, out of which 14,839.83 ha. woro not available for agriculturo, being unculturable waste put to non-agricultural usa. The culturablo waste, permmont pastures and grazing land was 31,552.15 ha and fallow land 170.77 ha. The net aroa sown during $1957-58$ was about 66.7 porcont of tho total grographical area of the valloy. Tho por capita crapped aroa in the valloy was only 0.22 ha.

$$
-7-
$$

Gultivation is carricd out in tho hills also, but tho oxact figures of aroa under pormanont cultivation and crop pattorn in tho hills is not lnown. Of lato cultivation of pinc apple as a horticulturo crop and Quorcus sorrata for Tassar scriculturo is gaining importanco in tho hills. Tho cract aroa undor those two itoms is not lnown.

The oxact aroa mader forest covor orcluding the Reservod and Protoctod Forosts was also not laown. So far the Stato authoritics woro undor tho impiossion, that the percontege of land aroa undor forosts was on ly 27%, But this survoy has rovealod much more aroa moder forosts and tho oxact aroa andor forcsts as por our survoy is givon in Chaptor III. Tho land uso dotails obtainod as a rosult of our acrial survoy aro also discuscod in Ghapter III.

2.5. Vegetation

The forests in Manipur are sharply stratificd by altitudo. From the foot hills, upto an alovation of 900 motros, tho climax forost is of a somi-ovorgroon typo comprising of Laurus-Molia. Bauhinia association. Lauracoac is roprosontod by Phocbe lanccolata, Cinnamomum cocidodapho, C. obtusifolium, Actinodaphno sikkimonsis, A oboyata, Machilus macrantha, M. parviflora, İtsaca salicifolia, findora molastonaca.

Mgliaccao includes Amoora rohituka, A wallichii, Toona ciliata, Codrcla fobrifuga, Dysoxylum binectariforum and D. hamiltonii.

Bauhinia as a codominant is roprosontod by B. purpurca and B. variegata.

In addition to those, Artocarpus chaplasha, Palaquium polyanthum, Gynometra polyandra, Totramolos nudiflora, Eugonia, Vitcx, Gnelina, Adina, Pasania sp. filanthus grandis, Schima wallichii, Ilox khasia, Sapium baccatun, Evodia moliacfolia, Elcocarpus lancifolia, E. aristata, Morus lacvigata arc also found in abundance.
2.5.1. Gachor Thesc forests aro found in tho wostorn part of Manipur adjoining Gachar, and corrospond to Champion and Soth ${ }^{1}$ s Wacher Tropical Sami-overgroon" i.c. $2 \mathrm{~B} / \mathrm{C} 2$. Thoso forests have boon subjectod to hoavy "jhuming" (shifting cultivation). Ono can soo a, lush bralso of Muli banboo (Mclocanna basifora) in the old abandonce 'jhums'. Falling in the samo altitudinal zono, thore is a bolt of Teals - Gurjan forcsts (Toctone grendis Diptorocarpus tuborculatus) along tho Burma bordor, togothor with D. turbinatus, Molanorrhoca usitata, Dillonia, Xylia, Lagorstrocria, Torminalia, Golina \& Bombax spp. Which have a differont and distinct floristic composition. This type too hes not escapod 'jhuming'.
2.5.2.

At altitudes of 900 to 1800 motros, wo find wot hill forosts on the uppor slopos of hills including hill tops corresponding to Champion and Sothrs nKhasi sub-tropicol wot hill forosts" i.c. $8 \mathrm{~B} / \mathrm{C} 2$. Hore wo can find the Saurauja-Boilschriicdia-Phocbe association, dominatod by Saurauja nopalonsis, S. panduana, S. roxburghiana, Phoebc lanceolata, P. paniculata, Boilschmicdia assamica, B. roxburghiana, Schime wallichii, Quoreus sp., Nyssa sossiliflora,

- Chinnemomum cocidodaphno, C. pauciflora, Eriobotrye bongalensis, Echinocarpus dasycarpus, Morus Lacvigata, Iitsoa panarnonja, L. sobifora, Cryptocarya " andersoni, Mechilus odoratissima, M. parviflora, M. bombycina, Ostodos paniculata, Iithocarpus spicatus, Fngolhardtia sp., Vaccinium dominianum,
Castamopsis spp.

Coming within the same altitude zone are the forests of Pinus kesiya occuriring in the hills in the North Eastern and Southerm part of the State along with Quorcus spp., Pasania, Castanopsis spp. 'these correspond to Champion and Seth's "Assam sub-Tropical Pine Forests" i, e* G/CR.
2.5.4 Between the altitudo of 1700 tc 2700 metios, In mosts of Qucrcus-Magnoliá Acer association are ct with. Theso corrospond to Champich and Seth's "East Himalayen Wot tomporate forosts" i。c. $11 \mathrm{~B} / \mathrm{C} 1$, The dominant charactoxistic spocics are Quercus Lancllosa, Q Lincuটa, Q, glavee, Pasania xylocarpa, P. pachyphylla, P, trumeata, Minchelia lanuginoia, M sampiolli, Ehocbo panicurv* lata, Schima khesiana, Alseodaphme dumi oola, jestanopsis tribuloides, Evodja Iraxins tolia, Accr campbolli, Botula alnodes, Pruns cerasoidos, Pypus pashia, Rosa gigantia, Noiina manipuronsis, Manglicuia insignis, iilicium giiffithii, Bucklandia populsoa, Micholia mani pirenais.

The small bamboo brundinaria maling is also mot with, in these forcsts.
2-5-5 Above 2700 motres, sub alpina regetation is obsenvod, with charecteristic spocics oin Prunus, fyrus, Ligusixrm. Taius, liex, Formstrocmia, Bucklandia populanoa, Acor campbclif, Magnolia cañpolin, Gestimopais tribuloidos, Fhododendron radinii, R. johmstonomul, E, manipurscisic., Ru watijis, R. clliotij and frimula spp. Surh areas aro of vory inmitod cxiscint.

2.5.6 Bamboo Bralsos:

Bumboo bralsos of lango oxtont cocur in tho foction, Southwostorn and North-westom parts of the Etato Enallar aro " ce bamvo bnatos occur almost
 scmi-overymon type of forcst in the wostory prois of the stato has toon hackod dom fioz 'ighun' and tho troe sproios liore given wisy to a donso growth of Molocanna brsitiona jntorsporsod wi'r sonc cirap roming bamboos, and a raro troo horo and thore. Tho Khesi sub-tropicaz Wet, Hill Forosts havo also

 cultivation at about 1700 motres, ribicin niso sojined to bo tha starting level
 the elevation or the soil charactoristics of the wet tomponate forests, thoy soom to havo boon spencd tho ravases of shifiting cuItivation.

Bamboos also occut an andorstorey an tree forests. dbout 15 spocies of bonboos occur in Manipui Stato viz. Mclocanma basifora (Mini), Toinostachyum dullooa (Dulon), Eancusa balcooa (Pulka oamboo), Ramousa pallida (Kala sundi), Dendrócalomus hemiltoníi (Petcha bamboo thop, or Wenop), Melocanna humi lis (Noli handi) Cophalostachym fuchsianum, Gopholos'achyw porgracilo, Bambusa khasiana, Bambusa lingiana, Bambusa vulgaris, Eamisuer amuninacoa. Except for Muli, Duloo, and Potcha, othor bambcos occur in small quantitics and in patches. It is scon that muli is instrucsive by nature being a runner typo Qf bamboo and has a ronarkable capacity to hold its own oliminating all other compotitors, onco the overwood is romovod as in the casc of 'jhuming', thus Prosulting in bamboo brakes ovor oxtonsivo ances.

2.5.7. Canc Brakos:

In placos whoro tho soil is wot ovor a long poriod, and is on ill drainod clay, rich in humus, various spocios of canes can bo found. Thoy form an imponotrablo thorny thicket, sonotimes with a fow troos standing ovor thom. Tho storas are typically trailing and nay go as far as $70-75$ motros. A fow palns such as Livistonia, Iicnla otc., and Duloo Bamboo aire found to occur with the canes. Tho inportant spocios of cano found occurring arc Calemus tomuis, Calamus leptospadix, Calerus floribundus and Calamus oroctus. Somo of thoso canc brakos aro being cloard for cultivation notably for 'Pan' cultivation roducing tho availability of cormorcially important cenos,

2.6.1. Accessibility.

Manipur is very poorly served with Roads or any other means of transport. In fact, the only all weather land route linking this territory with the rest of India is Imphal-Dimapur road (National Highray No. 39) connecting Imphal the capital of Manipur, with the rail head at Dimapur 215 kms . to the north. This road passes through Karang and Mao in Menipur and Kohima in Nagaland. As it passes through some treacherous hilly terrain, it is always liable to interruption due to land slides particularly during monsoons (soc road map of Manipur Map No. 3).

Irphal is connected to GaIcutta by fir, with one flight a day. This facility is also at times disrupted due to bad weather duriug monsoons. The air routc overflios Bangladosh in normal times, as por agreement. Thero are no railways in Manipur. If the passage of goods is allowed through Bangladesh by rail, to Calcutta, much of the gocds, both finished and raw can be availablo both ways at much checper ratos, as Banglados" Railway is just about 100 km . away, near Karinganj in Assam. The wostorn part of Manipur, which is endowed with vory rich forests of bamboo can bo sorvod by tho reilhead at Silchar which is only about 60 km . from the Manipur bordor and another 40 km . away is Karimganj.

The road commuication within the Stato is still worse, as now roads and bridgos connecting Imphal with important towns in tho stato, are yot undor consteren tion, and the foodor roads from tho intorior villages connecting the State highways aro still at the proposal stagos. The forosts are not sorved by any read systam. Thoro aro no 'forost roads' maintained by forost dopartment. Haulage from stump to road side is by human or bullock power. Owing to lack of road facilitios, the goods brought in irron noighbouring Statos cost much more at tho consuming points, while local products fetch much less than they should to the producors.

The Dordor Road Organisation is doing good work both for construction of now roads and maintonance of the important coxisting roads. They hevo almost comploted the construction of the Now Cachar road of 222 kms . connocting Imphal with Silchor in Assam, through vory hilly torrain.

The Stato has 232 kms . of national highway, and 580 kms . of Stato highways, which are bitumonisod, i.e. a road donsity of a moro. 04 km . por sq. lon. of aroa. It has 389 kms . of district ronds which aro of wator bound macadem, and foir woathor roads. It also has 1142 kns. of other district roads and intor village roads, (i. o. . 08 km . por sq, im.) most of which aro not oven joepable. The infrestructural dovolopmont, so fer as roads and rails go aro very unsatisfactory and in ono of the main causos of the slow dovelopraent of the aren.

2.6.2. River Transport:

River communication has a limitod possibility for timber transport in the Stato. The Manipur rivor is not fit for fioating duo to shalloy wator and rapids. The Borak river is uscful only in the lowor roachos inco, below Jirimukh on the wostorn border of tho state. Tho section from Jirimukh to Tipainulch in the south-wost is uscful for floating bemboos and timbor rafts, but it serves only a small fringo of the forost. However, the itility of Borak river as a moans of wator transport can be gronily onhencod by blasting the big bouldors hore and thore along the rivoi coursc, which impede the smooth flow of bemboo and timbor rafts. Those impodimonts aro locally called 'Hatiyas' and the onos at Bora Hatiya and Sofa Hatiya in particular nood to be attondod to. If this is dono, Borale river can be a very offective means of commuication loading in a soutnorly diroction for tho inaccessible Tamenglong and Jiribam sub.divisions,

2.7. Legal position of forests:

Tho total arca of Rosorvod Forosts is 1,32,936 ha. In additional aroa of 9,765 his. has boon proposcd as Roscred Forest. 4,12,259 he. has bean notificd as protcctod forests without abridging the rights of individuals and communitics. Howover, a large part of tho forcests are still undor village council owncrship and thoy joalously guard thoir forcsts from oxploitation. The protectod, and in some cases the Rosorvod Forests too, aro claimed as village council property. The forosts are not proparly domarcatcd and our survey parties could not in many cascs detornino whethor an amoa was R, F. or not, and ovon local people and fonest beat guards wore of no help in this respect.

This wncortainty about the logal stetus of the forcosts is a groat constraint on the possibilities of development in himipur. Beforc any large scalo forest basod industrios can bo attractod to tho state, a satisfactory solutien to the quosticn of ownership of the forosts neods to bo administrativoly worked out.
2. 0. Injurios to vhich the crop is liablo.

Biotic - Man :-
Tho groatost damage, that is inflictod on the forosts of theso arcar is by Man. The hill people clear vast strotches of woll woodod areas, and wasto good quality timber by burning for shifting cultivation, locally called Jhum. Thoy cultivato tho land thus clear follod and burnt for a period of $2-3$ yoars, and once tho lend becomos storile aftor losing tho fortilo top soil, thoy tako up now arcas for dostruction. This has boon going on ovor a long poriod and vast strctchos of accossible aroas which onco supported a luxurious troe growth, have boen reduced to scrub and grassy blanks. The only forests that are comparatively free from the ravages of shifting cultivation are tho Wet Tomperate forests, bocauso of their inaccessibility.

[^1]Birds:- Anong the birds, parrots do much damage to the soods of Gondeoi (Cinnamomum cecidodaphnc), Sundi (Machillus villosa) and Champs (Michalia champaca). Phoasants are fond of cating pulpy fruits of Gondroi. Of all the birds, Horn bills are responsible for most of the ficus infestation of various troos.

Insects:- Damago by insocts is also know to have occurred, rostly in plantation arcas. Galalaphyla, defoliating Gamari, Hyblaes puera defoliating Teak, Hypspyla robustat attacking Poma (Colrëla spp.) and Margaromia cadosalis bording Jam (Eugchta spp.) shoots, Phessur corvimus attaching Tealk saplings and roots of living jhalna (Tominalia myriocarpa) aro also oncountorod. Besides theso Bola (Somecarpus anacordium) and scveral species are attackod by defoliators. Weovils are found to dostroy seeds of Sundi, Champa and Gondroi. Shoot borcr attack in young pine plantations is also reportod.

Firo:- Although fire is not much of a problam due to sub-tropical conditions of forest, the burnings for 'jhum' do considorable danage to adjoining forosts also.

Irrogular felling:- Thoro is no premarking and approval of markod trees beforc folling. Thus there can bo littlo control on tho location or extent of follings or onforccment of workman like operation by contractors. Much usoful tirabor is wasted.

Climato:

Forost:- Except on raro occasions, frost has not caused sovoro danago to forcst as most of tho local spocics aro frost hardy. But it definitioly rostricts the introduction of frost tender specios in the hills.
Drought:- Drought is uncormon. The precipitation pattorn is vory favourablo to troc growth.

Storms:- Demage to troos by stoms by way of uprooting and top breaking is common in the promonsoon windy days. Danago to standing trees by lizghtning during monsoon is also common.

Parasitos:- Somi parasitic plants, Epiphytos and Forns have been causing considorablc damage to forosts. Loranthus scurrula, particularly has provod doadly in Gamari (Gmelina arborca) plantations. The attack of Loronthus on Jarul, Jam and Teak is fairly heavy. Ficus bound trees are a vory cormon sight in forests.

Glimbars liko Dioscoroa, Stilax, Iponca, and in particular Niania macrantha a now imfigrant to this rogion hes causod heavy damage both in plantations and in natural forosts. A Fungus of polyporus spacies is -found to attack Nageswar (Wasua ferrea) sporadically. Root and Stom rot is very common in most of tho oldar troos.

2.9. Poople and Socio-cconomic Brickground :

The Stato divides itsolf into two distinct regions viz. tho valloy and the hills for any socio-ocononic study. Socio-cconomicelly thoro is vast difforonce botwoon tho valloy and tho hills, in overy rospoct. Tho valley is inhebitad by tho Nenipuris, lmown as "Moitoi" and the hills by tho Naga, Kuki and othor hill tribcs.

Tho population of Manipur is $1,073,000$ the avorago donsity of population boing $48 \mathrm{sq} . \mathrm{km}$. Howovor, tho valloy with 8% of tho land aree supports 70% of the population and the hills forming 92% of tho land aron support tho balanco 30% of tho population. Tho isolation of tho hills has rosultad in sorious lack of amployment opportunitics in the hills and poor infrastructure with rogard to schools, hospitals otc.

Menipur has ossontially an agragerian econony with 80% of peoplo dopondent on agriculturo. Though rico production is surplus, 8o\% of this comics from tho valloy, where thoro is incronsing prossurc of population on the limitod land available. Somo whoat is now also boing cultivatod as a socond crop by somo antorprising cultivators.

In tho valley, much neods to bo dono to rolicve tho prossuro of 70% of tho Stato population doponding on 8% of the land aroa, which heis rosultod in oxtronoly small holdings, and low' yiolds por hoctarc, as no modern agricultural tochniquos can be adoptod on thoso tiny and fragmontod holdings.

To rolieve prossurc on agriculturc in the valley, nli out oncouragomont should bo givon to tho pooplo to dovolop thoir hondloon industry, which has alroady osteblishod a name for itsolf. Moro and more pooplo should bo inducod to tako up horticulturc, animal husbandry, piggory and poultry farming. As 90% of tho population of Manipur are fish cators, dovolopmont of fishorios holds vast opportmitios for tho pooplo of the valloy in the largo numbor of 'bools' (swamps) and tanks that oxist and also in tho frphal rivor and the many strcams that flow into it.

In the hills tho tribals resort to a destructive procoss of shifting cultivation, which posos a sorious problon of soil crosion and donudation of forcsts. Thoso pooplo put in onormous labour for cutting and burning of forosts, to got a small quantity of food greins. It is vory essontial to divort end utiliso this oncrgy and manpowor for bottor and productivo usos by providing on nlternato sourcc of mploymont ns a moans of living. This will also havo tho valunble forost rosourcos from dostruction, which can bo utilisod for ostablishing forcst besod industries, thoroby gonoreting coonony, which invturn will incrocse the oconomic powor of poople in tho hills. This is tho only way to ushor in an elround dovclomont in tho hills. Horticulture, as a varioty of fruits can bo grown in tho hills, and Soriculturc, as cultivation of Tassar silk on Qucreus somi sorrata as tho host, is found to bo succossful and should bo oncouragod in tho hills as a suurco of living. This also will rosult in sottlod ostablishmont and pormnont cultivation, as against tho pròsent soni-nonadic habit end shifting cultivation of hill pcoplo, so that comrumity devolopmont work like, ronds, housing, hoalth, oducation and clectrici'ty could bo providod for thoir sottlod villegos.

2.9.1. Lebour suppiy:

Labour supply in the Manipur valley is plentiful. As per the report of Agricultural Labour Enquiry, an average male worker has no work for 120 days in a year, a female is employed only for 33 days on agricultural labour.

The hills however present a different picture. No statistics are available, but the sparse nature of the population - only about 15 persons per sq. km . suggests a great paucity of labour for worlk in those areas. The valley people are reluctant to work in the hills for multiplicity of reasons. Large scale forest worling thus would require much blanning and organisation in the Manipur Hills.

2.9.2. Power :

Manipur State is starved for power. There are only some small power plants run by diesel for domestic supplies mostly. The hortage of power has been a great hurdle to industrialization.

The Loktak hydel project which is now well on way, is capable of producing $A 0,000 \mathrm{KW}$ of electricity. This will be a great boost to development. The plant may start producing in two years: time.

2.9.3. Industries:-

There are no large scale industries in the State. There aire hardly any small industries either, except for a stainless steel sheet processing factory and a fow saw mills in Fraphal, catering to local needs only. Gottage industries like cloth weaving, basket making, embroidery cater on ly to the local demands. Agro industries like rice mills, oil mills, one sugar factory and one pineapple canning factory exist, mostly catoring to the local demands.

A small timbor treatment and seasoning plant has been put up by the Forcst Department in Imphal as a trial project to popularise seasoned and treated timber. The purchasers are mostly Government Departments.

CHAPTER = III
PHOTOINTERPRETATION, MAPPTNG, AREA ASSESSMENTE

1. Acrial reconnaissance

The Bell Jet Ranger helicopter of the organisation was first used for a general reconnaissance over the forests. It was found that there were clearly discernible forest types usually over largo areas. Jhum cultivation, pine forests, wet temperate forests, bamboo brakes etc. were sharply differentiated.

As aerial photocraphs were not availablo in time, it was decided to do stratification by aerial flighta.

The entire area uas divided into $1 \frac{1}{4}{ }^{i} \times 1^{\frac{1}{4}} \mathrm{r}$ grids by latitude and longitude and the grids marked on the $\frac{1}{2 \prime \prime}=1$ mile topo sheets. Fach grid intersection was observod by flying at an average height of 300 m . abovo the canopy. Three.grid lines could be observed at one flight as one observer in front navigated and recorded and two in the rear recorded their own strips.

The interval between the grid intersection on the ground was approximately 2 km . and it wes found quite easy to sce that distance as tho air was crystal clear. "In some rare cases the plot-fell on the other side of a hill, which could be soen from another point. Initial flights ware at about $100 \mathrm{~km} / \mathrm{h}$. but after the first sortie we could identify the grids even at $160-170 \mathrm{~lm} / \mathrm{h}$. and that speed was maintainod for the remaining sorties.

The grid points were studied for an area of about 2 ha. i.e. a circle of 80 m. radius. The characters observed were landuse, vegetation and forest type.

Tho following land uses were identified.

1. Forest.
2. Agricultural tree land.
3. Current Jhum (shifting cultivation of the yoar).
4. Pasturo and barren lands.
5. ingricultural crop land.
6. Others.

In vegetation, the following types were recognised. Vegetation break up was done for land use "Forest' only.

1. Tree Forests (20% stocking and above).
2. Open Forest (Below 20\% stocling).
3. Bamboo brakes (Resulting from abandonod jhums).
4. Grass banks (causod by degeneration of ropeatedly jhumed area or natural formations).

Vegetation types 'tree forest' and 'open forest' wero furthor Vegetation types tree forest and open forest wero
classified by forest types into the following six catcgories.

1. Wat tomporate.
2. Pinc
3. Wot hill.
4. Semi evergreen
5. Teali-Gurj an, and
6. Undetormined.

The total area of the State was covored by 4578 grid points. Of these, 393 points were not classified by acrial observation as somo wore omittod in fiying, duo to smoke or fog, unobservablo in flying and also because tho topo maps woro trimed at ithe international boundary.

3.2. Photointeroretation.

Aerial photos wore obtaincd in March 1975. The specifications were as below.

Task No.

537 A	を:40,000
652 A	1:40,000
Area/20/60	$1: 50,000$
497 A	"

Period of nhotorraphy.

21.10.72 to 28.2.72
27.1.72 to 28. 12.72
9.3.61 to Scpt. 61.
22.11.61 to 23.1.62
17.12.60 to 8.4.67
16. 3. 70 to 18.3 .70

The A Ps whder inca 20/50, strip nos. 32,33,46 and 49 wero not very useful. On scaming the photos the following conclusions emerged.

1. "The land use pattorn as adopted in acrial reconnaissance could bo distinguished.
2. Forost type idontification was difficult, except for Khasi pine which is cloar by its crown, shape, tone and imago. All others had to be clubbed togother.
3. Donsity classification could be done into good (over 60\%) medium ($20-60 \%$) and poor (5-20\%).
4. Volume classification was not possible.

In viow of the above, a key for photointorpretation was prepared, based on land use classification as in the field manual, and is given bolow:

1. Forest
2. Open Forcst.
3. Blanks, barren land, grassy land-also includes regrowth and shrubs.
4. Bamboo brako.
5. Gurront Jhum and Old Jhum.
6. Guiltivation, digricultural trec law \& habitation.

$$
-16
$$

1. Forest :- Forest aroas with treo orown donsity more than 20% and Whore land surface is not used primarily for purpose other than forestry. Tho minimum area should bo more than 2 hectaros. It includes plantations, arca tomporearily undor stockod duo to clear cutting, rogeneration fellings, shifting cultivation with rogrowth on abandonod sitos with scatterod troes and bamboos.
2. Opon Forest :- Forost areas with donsity from 20\% to a lower limit of 5% with undergrowth of tree species or shrubs of any donsity and stunted troe growth. This type of forest comes gencrelly in exposed barren areas due to poor soil or duo to hoavy biotic intoriforonce.
3. Bamboo brakes:- Bamboos of oxploitablo stago appearing in the past jhuming areas with isolated tree donsity less than 20% Bamboo brakes are common along North-west and Western boundary of tho survey area.
4. Blank:- Opon aroas with troo donsity bolow 5%; it includes barron land, grassy land, shrubs and treo rogrowth duo to repoatod jhuming.
5. Jhum :- Tho practice of shifting cultivation locally called jhum is very common in this aroa. Tho old jhums appear on the A. Ps in a grey tono due to troe and banboo regrowth. The current jhums appoar in whitish tono which can be easily rocognised on 4 . Ps. Areas under the old and current jhums have beon put undor category shifting cultivation "S".
6. Cultivetion and Habifation - Iand usod primarily for cultivation, areas set asido mainly for rosidontial or industrial purposes viz. villages towns cities and factories.

Symbols used.

1.	Troe forest		F
2.	Open forcst		${ }^{\text {f }}$
3.	Blan'ss, barron land, grassy land,		
4.	also includes tree rogrowth \& shrubs Bamboo brakos		B
5.	Curront j hums \& old jhums (shifting cultivation)		Bb S
6.	Cultivation \& Habitation		C
7.	Trao Forcst with Khasi pino		P / H
8.	Opon Forast with Khasi pino		P/f
9.	Trec Forcst with banboo undorgrowth		PB
10.	Open Forest with Bamboo undergrowtr		fB

Donsity Classification.

Density has boen classified into three catagories. This could not be correlatod with the field classification of 5 catogories due to scale limitations of A . Ps.
\therefore Density Codo has beon givon to Forest "Fr and opon Forest "f" only.

-17-		
Donsity	Code	Forest tyoo
5 to 20\% poor	1	f
21 to 60\% medium	2	F
61\% \& up good	3	F
Density code 1 used in case of open forost "f", 2 and 3 in casc of Forest arcas "F".		
Examplo H . 1	$\frac{F P}{2}$	
Nunerator	$\begin{aligned} & F= \\ & P= \end{aligned}$	
Denominator $2=$ densitty 21% to 60%.		
Examplo No.2	$\frac{F-B}{3}$	
\because		
Numorator	$F=$	
(B = Scattered bamboos under treo growth.		
Denominator	3 m	density 61\%

On tho above key, 100\% photointorpretation of all the area was dono excopt, some gaps for which no photos were available.

The 393 unirccorded grid points of aerial reconnaissanco were marked on the A. Ps. by matching topo features of map and A Ps and wore then interprated for the attributes of land use, vegetation and forest type where possible. In those grids where forest types were not identifiable, use was made of the grid roforonce map prepared on tho basis of point reconnaissence and the grid was allottod to tho forest typo of tho surrounding grids.

3.3. Mapping

The maps on which field work was:done wore of old survey on ${ }^{1} n^{\prime \prime}=1$ mile scalo. Fresh mapoing by tho survey of India was well underway on 1:50,000 scale. Tho dotails of intorprotad aerial photographs have beon transferrad on to the baso maps on $1: 50,000$ scale for 35 map, shoets. For tho ramaining 1î map sheets modern style maps are undor difforent stages of proparation and will be supplied lator.

* Forost type map on $1=50,000$ scale showing differont land use and forost cover types viz Khasi pine in hatchures will be preparod on Koda line -prints. As limited copies of Forest type maps are requirod, Amonia prints can be made out of the Koda line negative.
'u. The forcst type map is based on photographs taken at widely separated periods.of timo. This causos some discrepancies as the forests are liable to be cut down for 'Jhum' in the Intervening period. Also, for the area for which no photos wero availablo, no interprotation has becn dono. The assessment of aroa from A. Ps therofore is only of topical intorest, and cannot be usod for ostimation of volumo out-turns.

3.4. Arop Assessmant:

The assossment of area, in view of what has boon detailed abovo, is not possiblo "by planimetric methods.

تt was therefore "decidod to assoss arce from the grid point interpretation by aerial reconmaisisanco supported fby photointorprotation or

Tho tot
Tho total geographical aroa of Manipur Stato is 22,366 sq. km. This wes coverod by 4578 points. Therefora oach point is given e valuo. of

The distribution of the points and tho an as below:-

The area undor forest is thus ostimated at $15,154.94 \mathrm{sq} . \mathrm{km}$. forming 67.76\% of the land area of tho state (The improssion of the forest depart. mont was that the State has 27名 area undor forest). The annual area undor jhum cultration is estimated at $1,832.08 \mathrm{sq} . \mathrm{im}$. or 8.19% of the, total area of the stato or almost tho samo area as that of tio Imphal valley.

Tho aroa under forost is furthor classifiod into 4 typos as below:-

$$
-20=
$$

CHAPTER - IV

EIELD INVENTORY

4. 5.

4.2.

The main object of this survey was to assuss the growing stock by spesies and uti lity and to arrive at the annual out expected from the arca. The precision aimed at was $\pm 10 \%$ at 95% probability level for the total growing stock.

There are in all 18 Map sheats covering the Manipur survcy area. 15 of them are $\frac{1}{2}$ " sheets, 2 of them are $1^{\prime \prime}$ sheets and one is a $\frac{1}{4}$ " sheot. Each of these shects was given a code number for identificiation, as below.

Shegt Ne.		Gode No.
83 G SW	$=$	41
63 G NE	=	42
83 G S	=	43
83 H NW	\pm	41
83 SW	$=$	45
83 NE	$=$	16
88 SE	=	47
83 K NE	$=$	18
83 NW	=	50
83 SW	\pm	51
83 LNW	$=$	52
83 L SW	=	53
84 卫 IW	=	54
84 I MW	$=$	55
$83 \mathrm{~L} / 9$	$=$	56)
$83 \mathrm{I} / 10$	=	57)
84 E	=	58 - ${ }^{11}$

Each $\frac{1}{2}$ " sheot has been divided into 24×24 squares of grids at $1 \frac{1}{4}^{1}$ interval. Each intersection point or grid point is given a number for identification. For this purposo the left bottom corner of the sheet i. 0 . the S.W. corner will be numbered as OO latitude as well as 00 longitude. Each longitude theroafter is given a number from 01 to 23. Similarly, the subsequent latitudo lines are also numberod from 01 to 23 as shown in diagram No. 1.

The intorsections of the last letitude on the northern border and the last longitudo on the eastorn border of the shoot aro not givon any numborsfof the adjacent sheets.

Las they will correspond to 00 numbers
For roforring to a grid, it is necessary to give the numerical code of the map sheet and the grid number, for exainple 49/0207. In giving the roforonco number, tho latitude will be read first and then the Iongitudo.

- RAMDOMLY gelecten for gamglate.

Pilot Survey

A pilot survey was carried out after stratification of survey area by aerial reconnaissance, by taking certain number of grids in each stratum to find out the variation in volume under different Forest types. In all 41 grids were sampled in pilot survey distributed in different forest types. With the help of results of the pilot survey, it was decided that 350 grids in different forest types are to be sampled for a precision $\pm 10 \%$ it 95% probability level.
4.4. " Sampling Design.

The sampling desien was a random sampling after stratification. The sampling frame consisting of grids was laid out on the map at $1 \frac{1}{4}$ minute interval as already explained. Each square or grid represents an area of $4.8855 \mathrm{sq}, \mathrm{km}$. in all 350 grids (excluding bamboo brakes) were selected after generating random numbers with help of random tables distributed under different forest types. The break up of total no. of forested grids and the no. of grids to be sampled under each forest type is as below.

Strata	Total grids in the strata.	No. of grids to be sampled in each strata.
Wet temperate	297	50
Pine	500	80
Wet Hill	1349	190
Semi evergrean	132	20
Teak Gurjan	125	15
Barnbo brakes	669	20

4.4.1.

At each grid point (the intersections) randomly selected a plot of 0.1 ha. was laid out, heving the grid point as its contre (see diagram 2). The plot was laid out from its centre (keeping the grid point as centre of the plot) by taking 22.4 metres (horizontal)in, North, South, East and West directions, by compass and tape and joining the ends. Slope corrections were made on sloping grounds.
4.4.2.

The entire plot was enumerated for total number of trees by - diameter classes and numbor of bamboo clumps by size classes. In case of non-clump forming bamboos, like Muli (Melocanna basifera) oach culm was
taken as a clump.
4.4.3.

All trees above 40 cms. diameter were measured in tho ontire plot as sample trees for height/diameter ratio. Troes from 10 to 39 cms. diameter were measurod as sample trees for height/diametor ratio in the N.W. quadrant only.
4.4.4.

Data for volume of Khasi pinc vas collected with the help of Barì \& Stroud Dendrometer, without folling to trees. An attompt was made to study volumes of broad leaved species also, but the instrument had its limitations the measuring branch wood especially in poor visibility in denso forests. Thereforo for the broad leaved species the volumo data collectod for Tripura survey was adopted as the forests are of a vory similar nature and quality. Bamboo clump onvmeration was carried out in the ontire plot by clump sizo classes. Muli was envmeratod only over the

northern half of the plot. Studies in detail in respect of culm size, growth condition, quality and measurements were confined to N.W. quadrant only in case of clump forming bamboos and to ITortherin half of W.W. quadrant in case of Muli bamboos. (See Diagram Nos. 5 and 4).
4.4.5.

The information collected through ground sampling was recorded in five forms drawn up for the purpose viz. Piot Description form, Plot Enumeration form, Sample Tree form, Bamboo Emumeration form and Bamboo Weight Form. Samples of theso forms ane given in appendix. The forms were designed for data punching on the usual 80 colirm punch cards.

4.5. Implementation

The survey was implemented in the manner outlined below.

4.5.1. Ley out of samples.

The map sheet showing the lay out of grids and the randomly selected grid points or plot cenvres ware prepared in the base camp and allotted to Grew Leaders. For each plot to be tackled, a conspicuous and umistakable reference point was selected by the crew leaders, from where the plots could, be reached with the holp of Compass bearirg, and distance measurement by chain, tape or nylon rope. Aftcr reaching the grid point which is also the centro of the plot, the plot was laid out from the Gentre by taking 22.4 metres (horizontal) in North, South, East and West directions by compass and tape and effecting slope corrections as already explained.

4.5.2. Recording of Field data.

The plot approach form, which is meant for time study, and help in check visits later, was filled in by the crew leader as he proceoded from the camp to the plot, and, as he returned from the plot to the camp. This is merely descriptive and the information is not coded.

The plot description form too is qualitative, but is codod for punching on cards. This form includes information on administrative divisions, land use, legal status of forests, topography, altitude, terrain, aspect, soil, vegetaition, bemboo occurrence, quality and regeneration, biotic influences, past treatment of the forest and proposed treatment, incidence of Grass and fire.

The plot entmeration form is for recording trees by species and djameters and was coded.

The bamboo enumeration form, which too is, coded, was for recording occurience by density, species, regeneration, flowering etc. It also gives details of number of culns by size ($\mathrm{d}_{\mathrm{F}} \mathrm{a}_{3}$) and age. Damaged, burnt and rotten
-culms were recorded separately, Culm lengths and diameters were recorded for a sub sample of two culms from each clump.

- 'In the sample tree form all the tree data are filled in. One form is used for 10 trees. This form is also coded for punching.

4.5.2.1. Border Trocs \& clumes

The trees, the stems of which touched the N.W. and S.W. borders of the plot were treated as 'IN' trees and were enumated. Those which touched the N.E. and S.F. borders were considered as loUT' trees and were not enumerated.

4.5.2.2.Tree Data

For the general enumeration of the trees in the entire plot, only species and diameter were recorded. Semple trees wore studied only in southerr half of the N.W. quadrant, (See diagram No.4). For these, the following details were recorded.

1. Species
2. Dominance
3. D.B.H.
4. Double bark thickness
5. iotal height
6. Clear bole
7. Forn longitudinal
8. Form sectional
9. Defects
10. Height.
(Measured with the halp of Blume Leiss Fypsometer).

4. 5. 2. 3. Bamboo data.

Bamboo data was collected as detảlod under para 4.4.4.
In case of current years culms of both Muli and clump formers, the diametor classification was not done, as the growth of culms would not have been completed.

In tho case of border clumps, those which were more than half inside the plot were included and those which were more than half outside the plot were excluded.

* Bamboo weight data.

Bamboos were enumerated according to the following diametor classes:-
2 to under 5 cm .
5 -do- 8 cm.
8 cm . and over.
Apart, from- counting the bamboos under 3 diameter classos, it was felt necessary to collect the weight data also to arrive at the green to dry weight ratio.

The woight of the bamboo culms was determined by length and diemeter classes. The waight of switchy culms iev. below 2 cm . diameter was not collectod as they were not to be exploitod. Fhom each diameter class of each species 2 metmo culms wore selected and out at 25 cnl above tho ground and weighed on tho pot to the nesrest; 5 grames and recorded in the bamboo Weight form. Those aro numbered sample culm INo. 1 and 2. From sample culm No. 1 and 2. From samplo culm No. 1 of each diancter class a submample of 1 metre length is cut from the portions of lower $1 / 3$, middle $1 / 3$ and top 1/B. The weight of these sub-samplos was also taken to the noarest 5 gramess and recorded in the form on the spot. These samples were brought bacir to the camp and their weight reconded at intorvals till their air dry weight was reacher. A further subusampic by halving the lengths of each piece was brougint to the Zone headquarters at ilagpta and was oven dried to O 名 moisture and the ratio of ovendry woight to green weight was calculatod. T he results are given in a subsocuent chapter.

CHAPTER - V

DACA PROCESSITG

5. I. Generat

The data received in the field forms was proporily dacuaented in the Data Frocositing Unit and codos filled in where-ever these were needed. Tre forms were manuality checked for any inconsistency before the data were twansfarce oin tine punch cards. After corrocting the forms the data were punched on punch caxda, vorified and axr unga in proper sequence for fuether processing, The data on cards were then Ioaded on to magnetic disk packs fon facilitating the selculations of tree and plot volumss and preparation of stock and stend taities.

5.2. Inrut for the computer

After correcting the field forms, the information of the forms was traneferred on to the punch cards. These cards were verified on the vorifying lnachine and erranged in proper sequence with the aid of card scrier and collator, The tiotal number of cards punched in each card design is given below:-

Cand Design

Nuber of carchs

(1) Plot Description	(CD O1)	202
(2) Plot Enumeration	(CD O2)	626
(3) Bamboo Enumeration	(CD O3)	281
(4) Sampla Tree	(CD O4)	1294

5.3. trea

The broak up of tho total geosraphical arsa of $22366 \mathrm{sq} . \mathrm{km}$. into the varinus land use classes, vagetations and forest types was done from the robults of aeriel reconnaissance supplemented by photo interpretation. The wea unden various land uses, vegetations and forest types together with

5.4. Volune gauations

The local conditions in Maniprix did not allow falling of the trees. Ti was docided that goneral volume equation developed for trest of the spocies" of Tripura be used to derive a local volume equation for all the speciess with the help of samplo tree data excopt for Pinus kesiya. In case of innus kesiya the tree volume obtajned frozi Berr and Stroud Dendrometer neasurcments by Frrest Rescarch Institute were used for acriving a general volume equation. The following forms of equations were tried for general volume equaition.

$$
\text { (i) } v=a+b D^{2}{ }_{H}
$$

(2) $V / D^{2} \mathrm{H}=\mathrm{a}+\mathrm{b} / \mathrm{D}^{2} \mathrm{H}$

- The following equations were selected.
(1) Finus kosiya
$\frac{V}{D^{2} H}=-0.013767 / \mathrm{D}^{2} H+0.254694$
(2) Rost spocies $V=-0.0000282+, 314003 D^{2} H$
(Tripura)

Diametor over bark at breast height and hoight of sample trees wore substituted in tho abovo equations to estimate sample tree volumes.

From the sample tree volumes and the breast height diameter ($\mathrm{O} . \mathrm{B}$) of the corresponding trees, local volume equations of the following form were tried.
(1) $V=a+b D^{2}$
(2) $\frac{V}{D^{2}}=a+b / D^{2}$
(3) $\sqrt{V}=a+b D$

The following equations were selected.
(1) Pinus kesiya $\sqrt{\mathrm{V}}=-0.200251+2.927166 \mathrm{D}$ (Diameter in metres)
(2) Rest of species $\sqrt{V}=-0.226400+2.935870 \mathrm{D}$ (Diamoter in metres)

The Barr and Stroud Dendrometer reading in respoct of tho undermentioned species were enough to dorive volume equations. However these did not cover sufficiontly large number of trees and therefore could not be used for volume assessment in gencral. They are given here to bo of help in arriving at volumes of single trees, whose diemoter and height is kown.

1. Diptorocarpus turbinatus $V=.018666+0.405198 \mathrm{D}^{2} \mathrm{H}$
2. Dipterocarpus tuberculatus $V=-0.011395+0.398462 \mathrm{D}^{2} \mathrm{H}$
3. Duabanga sonneratioides $\quad \mathrm{V}=0.089102+0.315044 \mathrm{D}^{2} \mathrm{H}$
4. Melanorrhoea usitate $\quad V=0.080219+0.306333 \mathrm{D}^{2} \mathrm{H}$
(Both height and diameter are in metros in these equations).

Tree volume

The underbark volumo of each enumorated treo was calculatod from the sclectod local volume equation and tho over bark breast height diameter of tho treo.
Plot Volume
The plot volume was obtained by adding under bark volumes of all the enumerated trees in a plot.
= Stand and Stiock - -
\ddagger,
\because While enumerating the plot, each trec was classified in five availability classes viz. Silviculturally and Economically available, economically not available, silviculturally nöt availablo and dead but available. Stoms and Volume per hectare by diamcter and species wore estimated for each availability, vegotation and forest type. However, it was found that duo to lack of experionce of this type analysis our crew had misjudgod tho aveilability status in many casos. As such the analysis of availability
was given up. The stems and volumes per hectare are givon in Tables 3.0,0 to 3.4,5. and 4.0.0. to 4.3. respectively. Total number of stems and total volume for each vegetation (tree forest and open forest) and forost type were also derived, These are given in Tables 5.1.1. to 5.2.3. and 6.1.1. to 6.2.3. No trees of 'Dead but evailable' class were encounterod.

Standerd Error

Stendard errors expressed as percentage for the estimates of area are given in Tables 1.1., 1.2. and 1.3.

Standard errors for the estimates of volume in different forest types of tree forest and open forest are given in Table 2.1. and 2.2.

5.9. Bamboa Yield .

The occurrence of clump forming bamboo was given in 53 plots oniy. Hence the calculations for clump forming bemboo are based on 53 plots.

Occurrence of muli was noticed mainly in bamboo brakes. Area under bamkoo brake wes taken as the area under Muli.
5.10. Muli Bamboo

Total number of muli culms were recorded in the Northern half of each plot. These figues provided ostimate of the total muli culms over the entire bamboo bearing arca.

The dotailed cnumerations of muli culms occurring in the Northerm half of the North-West quadrant wore dono by ago (current seasons, 1-2 soasons and over 2 soasons), soundness, and diameter (less than 2 cms., $2-5$ cons.\& $5-8$ cris.). This data over all the bamboo plots provided tho proportion of culms in different ago classes, soundnoss classes and diameter olasses. These ratios wero applied to the total number of muli culms enumerated over the ontire area, to ostimate the number of muli culms in different classes. The no. of culms/ha. by age and soundness are given in Table 7.1.

5, i1. Glump forming
The total number of clumps in each plot werc enweratod along with tree onveration. The data over all plots providod the estimate of number of clump/ha. All the clumps in tho North-west quadrant of each plot were enumerated in datail by age (current soasóns, 1-2 seesons and over 2 seasons) and soundnoss (Greon sound and groen damagod, Dry sound and dry damaged, and docayed) and diametor (loss than $2 \mathrm{cms}, 2$ to less than $5 \mathrm{cms}, 5$ to less than 8 cms and 8 cms and abovo). This data providod tho numbor of culns per cIump in difforent catogorics. Theso figures whon aultiplied by the number of :elumps/ha. gave the number of culms/ha. in the various categories. Standard orror oxprossod as porcentage of muli culms/ha., clumps/ha. and green woight of culms have also boen dorived and aro given in Tablo 7. O.

5.12. Weight.

Green wolght of bamboo culm in diamoter classos 2 to 5 cins., 5 to 8 cas. and 8 cms. and ovor was available from tho fellod culms of these clessos. The groon weight of a culn was convortod to air dry weight by applying the following porcentages. The air dry weight $=$ oven dry woight $+10 \%$, end tho table below gives the firures of afr dry woight porcont.

	2-5 cms	5-8 cn	8 cus. +
Muli	..63.82	57.73	-
Clunap forming	52.03	50. 34	40.77

The following weightagos were given to tho different conditions of tho culm for determining the weight of a culm.

Groon sound	1.0
Groon damagod	0.5
Dry sound	2.0
Dry damagod	1.0
Decayod and fire damaged	0.0

From the above woightages, the averago air dry woight of a culm and the no. of culms/ha. the average air dry weight of bamboo culms per hectoro was dotermined.

The results of bariboo dry weight per hectare by ago and soundnoss are given in Table 7.2.

Consolidated rosults on Muli and clump forming bamboo are given in Table 7.0.

.31-
 GHAPTER - VI
 RESUTIRS OF SURVEY

The total area of the Stato is $22,366 \mathrm{sq}$. kns. of which agricultural crop land constitutes 14.18% or $3,170.72$ sq.kas. and agricultural tree land consintute 1.51% or 337.10 sq. lms., the extent of curront jhum is 8.19% of tho total area or 1,832.08 sq.lms. Forests, which includes tree forests, open forest, bamboo brakes and grass banles within forest, constitute 67.76% of tha area of $15,154.94 \mathrm{sq} . \mathrm{kms}$. Other land uscs aro given in tablo 1.1 along with the standarderror percents in tho ostimates.

6.2. Veretation =

Landuse - 1, i.e. forest has beon subdividod into 4 vegetational - types and the broak up is givon in Table 1.2. Tree forest with density ovar 20\% occurs in 34.08% of the total land area or 50.29% of the area under landuse - forest. Tho total extent is 7,621.44lmi . Open forests i. a. having density betwoen 5 to 20% constitute 18.41% of the total land aroa or 27.18% of tho forest area. They extond over 4,118.51 sq. lams. Bamboo brakes which are results of shifting cultivation constitute 14.61% of the total aroa or 21.56% of the aroa under forest. They extend over 3268.43 sq. kns. Grass banks occur to tho oxtont of 145.57 sq.kms. They appear to be a further degradation of the bamboo brakes due to continuous jhuming.

6.3.

It is interesting to conpare the total curront jhum of $1832.08 \mathrm{sq}$. . mm . with total aroa of bamboo brakes i.e. 3268.43 sq. krns. It is understood that a jhum area is cultivated for about 2 years before a new arca is taken up, it theroforo appoars that the 'jhum cycle' is approximately 6 years, and tho people probably come back to the samo placo for jhuming near about the 7 th year. Tho hypothosis is further strengthened by the analysis of age class of bamboo which is given lator in the chapter.

6.4. Forest Types:

Table 1.3. shows the distribution of tree forest and open forest by forest types. 5 types of forests heve been recognised as described in tho earlier chapter. Tho $\begin{gathered}\text { ent temporate forests constitute } 16.86 \% \text { of the total }\end{gathered}$ aroa under tree forest and 4.03\% of the total area under open forest. Tho khasi pines occur over $\mathbf{1 5 1 . 4 1 \%}$ of the tree forest and 64.41\% of the open forest. This constitutes the major type of forest in the state. Somievergreen forest occurs over 5.77% of tho tree forest and 4.98% of the open forest. Toalk-Gurjan type of forest is found over 6.05\% of tree forest
\therefore and 3.8% of the open forests. The area dotails may be seen in table 1. 3. Tho porcentage of sami-cvorgreen forost is low because most of it apparently 4 has been convortod into bamboo bralkos due to repeatod jhuming.

Although a forest type called Teak_Gurjan has bean identified in this arca according to Champion and Seth's classification, our crow did not come across a single troe of naturally grown weak in this stratum.
114.94% of the tree forest area and 22.42% of the open forest area. Wet hill typa of forests occur over ..

6.4.1. Distribution of Volume/ha, by forest types

Table Mo. 2.1. gives the analysis of volune/ha., standard error percent and area estimates under each forest type, and total volume in the forest types with standard error of the total volume. The wet temperate forests contain the maximum volume/hai. i.e. $123.150 \mathrm{~m}^{3}$. The next in volurp are the seminevergreen forests with $98.095 \mathrm{~m}^{3} / \mathrm{ha}$. followed by wet hills having $90.720 \mathrm{~m}^{3} / \mathrm{ha}$. and Tealc-Gurjsn having. $71.392 \mathrm{~m} / \mathrm{ha} . /$ with a standard error of 10.2%. The total volume in the tree forest is $6,80,77,800$ m ${ }^{3}$ with a standard error percient of 10.4 .

The open forest type of Vegetation. shows a volume of only $5.663 \mathrm{~m}^{3} / \mathrm{ha}$. in wet tomperate, $5.342 \mathrm{~m} / \mathrm{ha}$, in pine forest, $14.018 \mathrm{~m} 3 / \mathrm{ha}$. in wet hills forest, and $10.522 \mathrm{~m}^{3} / \mathrm{ha}$. as the weighted average over the entire open forest stratum. The figgres are quite indicative of the vast difference in the volume/ha. between the tree forest and the open forest strata. It is apparent from the volume figures that the open forest type is unsuitable silviculturally and economically for worlsing as productive forest and therefore is subsequent considerations they have not been considered as productive forests.

How to develop these open forest areas for forestry production is the domain of Forest Manager, and hence it is not dealt with here. The soil and climate are so good that any of the fast growing species could be grown without much difficulty. The biggest bottleneck is likely to be the objection Irom the tribals, which would nocd extensive publicity of a highly convincing nature.

6.4.2. Distribution of stems/he.

 meter classes and species for various vegetationaj and forest types. Vegedation type 'grass banks' contains a mere 4.705 trees per hectare. The wet tamperate forests bear 331.102 trees per hectare in the tree forests, but on ly $58 /$ has in open forests (be low 20% density). The pine forests bear a total of 259. 993 trees/ha. in Trea Forest and $39.999 / \mathrm{ha}$. in open Corosts. For the Wot Hill typo the figures are 323.483 and 38.179/ha. respectively. Teak-Gurjan forests have 317.775 treos/ha. No samples of open forest appearod in this forest type. Tho open forest stratum with donsity lass than 20% is not amenablo to working as a.whole except under schemes of plantations. The stratum is therofore not considered in assessment of the cut.
6.5. Distribution of velume:

Table Nos. 4.0.0. to 4.3. give the distribution of volume/ha. by diametcr classos and spocies for various forest type in the two density classes. Who-volume in the open forest is very low compared to that in troc forests. The, standing volume in Grass banks is $4.869 \mathrm{~m}^{3} / \mathrm{ha}$. A comparison of the volumes in tree forest and open forest has been giver in an carlier para in this chapter.

Distribution of total stens by diametor classos and spocies and distribution of total volurio by diameter classes and species aro also given for each forest type in the table nos. 5.1.1. to 5.2.3. and 6.1.1. to 6.2.3.

6.6. Bamboo:

Both clump forming and non clump forming bamboos aro availablo in Manipur Statc. Muli banboo (Melocannabasifori) which doos not form clumps is found mostly in bamboo bralces oxtonding over 326,843 ha. The avorago stocking of Minli banboo in tho bamboo brakes is 10,827.4 culms/ha. Tho broak upp of this number by agci and soundnoss is given in table No.7.1. The S.E. for no. of culms/ha. is 23. 290_{8}

A porusal of this table will show that 14.2% of tho total culms are tho curront year's recruitment in sourd condition and 0.9% are damaged i.e. the annual recruitment is 15.1% of the total growing stock. ffili between one and two seasons old in sound condition constitutes 28.3\% of the Erowing stock and 38.4% are over 2 seasons old. In addition 4.9% greon and damaged bamboos belong to one to two seasons age group, and 11.6\% dry sound and dry damaged bamboo may be presumod safely to belong to the over 2 seasons age group. The age class distribution therofore is the yoar's culms 15.1%, 1 to 2 soasons 33.3% and over 2 seasons 50% Unusable make up the rest.

If wo assume that the life period of Malt baraboo is approximately 6 to 7 yoars, it will be seon that the annual recruitmont is in, almost, correct proportion to the total growing stocl. This would mean that the annual incramont itself could safely be taken as the annual yield of bamboo. The jhum cycle in the caso of muli forosts has also been calculated at approx. 6 to 7 yoars which coincides with the Iffe period of muli.
6.6.1. GIump forming bambio.

Tho following are the common cluap forming bamboos in Manipur:-

1. Dondrocalamus hamiltonii
2. Dendrocalomus strictus
3. Dendrocalamus longispathus
4. Teinostachyum dullooa
5. Bambusa balcooa

Dendrocalamus hamiltonii is the most comon specios among tho clump forming bamboos.

6.6.2. Area and Growing Stock

Calculation of arca for clump forming bamboo is detailed in tabla 7.3. This has boen arrived at from the proportion of grids in which clump forming bamboos occur out of the total grids samplod in each forest stratum. Tho total aroci of clump formins banboos cane to 459,439 ha. The average number of clumps/ha. is 64. 151 with a standard error of 18.09\%. The number of
$=:$ culms/clump work out to 15.725 with standerd orror 12.36% The total number Of culms of clump forming bamboo aro $1008.77 / h a$. with standard error percont
i 21. 91 . Tho average green woight of
4.21. 91 . Tho average green woight of muli culms.of 2-5 cin. diameter class is 43913.333 gms. and the standard error was 1.65% For tho $5-8 \mathrm{~cm}$. diameter class of muly the weight was 9158.4091 gins. with standard error of 4.96% The average green woight/culm for cluap foming baboo was 5635.490 gms . for class $2-5$ cms., 14129.784 gms. for diametior class $5-8$ cms., and 34842. 307 gms. for diametor class of 8 cms. and over. Tho S. E. porcent for culm woights were $6.48,5.18$ and 7.74 respectively.

A perusal of table No. 7.1 for clump forming bamboo shows that 15.1% of the total culas are the ycar's recruitment in sound condition and 1.5% are in damaged condition i.e. total recruitment is 16.6% of the total growing stock. The sound culms of 1 to 2 scasons age arc 19.6% and darnaged culris formod 9.8% i. 0 . a total of 29.4% culris bolong to this age class. The dry sound and dry demaged add up to 16.4% and may be classifiod together with over 2 soasons old culas of which green and sound cuins constitute 32. 4 名 of the total growing stock. Thus tho agemise composition of the clump is current year's 16.6%, 2nd year 29.4% and over 2 seasons 48.8% The life poriod of clump forming bamboos also varies from 6 to 7 yons and again tho annual recruitment appears to bo in correct proportion to the growing stock and the life poriod. As such even in this case the annual recruitment can safoly be taken as the annual cut.

In the 1 to 2 scasons age class tho slisht over stocking appears to be due to wrong classification of ovor 2 seasons culms in this category in the field. Normally the two year old culns should have been nearly same or slightly less than the recruitment of the year, because there is mortality.

6.6.3. Air Dry Weight

As the result of experiments carried out by us the percontage air dry weight (oven dry $+10 \%$ moisture) to green woight at time of felling was
found to bo as below:-

	2 to 5 cms.	5 to 8 cms.	8 cms. +
Muli	63.82%	57.83%	-
Clump forming	62.03%	50.34%	40.77%

CHAPRER - VII

POTENT LAL ANHUAL CUI

7.1. Present Management.

Because of the peculfar legal position of the forests, the working of the forests is in a very rudimentary stage. Management systems are usual:ly of selection-cum-Improvement type, but that also cannot be correctly followed. Only selection of the most desirable tree is the usual method of harvesting. No data is available on the theoretical rotations, rate of growth etc. of any species.

The forests are well stocked, are uneven-aged and there is district fall in the number of trees per hectare at $40-49 \mathrm{~cm}$. diameter in all forest types except wet temperate which is the result of exploitation in the past and present for local needs. The fall occurs at 50-59 crns. dia. in the wet temperate forests which are found at higher elevations.
7.2. Future Management.

It is not expected that the manpower resources of the state will permit any intensive management of the forest in a blg way. Selection will remain the system in vogue may be for the next ten to twenty years over most of the area. Our proposed cut is, therefore, worked out on this model.

For determing the potential annual cut Snythies' safeguarding formula has been used. In this formula, the r-otation is not involved, as there is no guide to the acceptable rotations in these forests.

There is also no guide to the number of yoars needed for the preselection girth class to pass into the selection girth class, in respect of Manipur. But for the forests of Tripura 20 years has been considered as the period in the local working plans. In Manipur 25 to 30 years has been assumod as the forests are much denser than Pripura, and soils somewhat poorer.

There is no rule as to the length of the felling cycle. Generally a 20 to 30 year cycle is adopted in selection forests. It is considered that in Manipur 30 yoers may be an acceptable period for the forests to be gone over.
7.2.1. 'Smythies' formula takos into consideration the imbalance in the distribution of trees in diameter classos. The economics of oxploitation at present allows only the romoval of the largest diameters. The working plans of Manipur have prescribed a 60 cm . dia. for semi evergreen and wet hill types of forests. The wet temperates are longer lived species and can grow to larger sizos hence the diameter for class I may be placed at 70 cms . for the wet temperate forests and 50 cms . for the other forest types. The nert lower dianeter class will be the pre-sclection class.

The mortality percent is assumed as 25爱, in passing from premelection to suiection diameters.
$t \doteq 30$ or 25 years $i . e$. time taken for class II trees to go into Class I.
$f=30$ years felling cyclo.
$I=$ no. of class I tree-s.
$Z=25 \%$ i.e. mortality percent due to deaths, illicit fellings, and silvicultural retentions.
7.2.2. On the assumption of 30 year felling cyclo tho percentago of trees that passes from Class II to Class I during the following cycle is

$$
\begin{aligned}
& x=\frac{f}{t}(I I-2 \% \text { of } I I) \\
& \text { or } \frac{30}{30}(I I-25 \% \text { of } I I) \\
& \text { or } x=75 \% \text { of II } \\
& \text { If 't: is } 25 \text { years. }
\end{aligned}
$$

then $x=\frac{6}{5}$ (75% of II)
The formula then is

When $N=$ no. of class I trees - Felling cyole.
The potential cut has been worked out on this formula. The total no. of trees in each girth class is given in tables 5.1.1 to 5.1. 5.
7.2.3. On the above said premises, the potential amnual cut from the forests is worked out below.
7.2.3.1. Wet Temperate Forestse

Total Selection trees above .70 cm . dia.
$=998,752$ i.e. Glass I.
Preisalection tree $60-69 \mathrm{~cm}$. dia.
$=856,513$-i.e. Glass II
$x=\frac{f}{t}(I I-Z \mathscr{t}$ of $I I)$
or $\dot{x}=\frac{30}{30}(856513-29 \%$ of 856,513$)$
or $\mathrm{x}=642385$

$$
\begin{aligned}
\text { Yield } & =\frac{-37}{\operatorname{Class}-\frac{x}{1} \frac{x}{2}} \times \mathrm{N} . \\
& =-\frac{642385}{998752}+321192 \\
& =-\frac{642385}{1319914} \times 33292 \\
& =0.4867 \times 33292 \\
& =16203
\end{aligned}
$$

or say 16200 trees per year.
Most of these trees would come from the 100-109, 90-99 and $80-89$ cy. dia. classes during the first felling cycle and in 30 years a total of ${ }^{-} 486000$ trees wöuld be available. This means all trees of 100-109, all of 90.99 and about half of $80-89 \mathrm{~cm}$, dia. trees will be harvested during the cycle. The effective selection diameter therefore will be 80 can. o. $_{\text {b. }}$

The annual cut is distributed in accordance with the percentage of these diameters in the crop.

-	Vol/tree m^{3}	\qquad
i.e. $100-109=2376$ trees	7.508	17839.22
$90-99=9512$ trees	6. 389	60776.49
$80-89=4312$ trees	4.931	21262.92
15,200 trees		99,878.64

Thus the total out-turn in this forest type is $99,878 \mathrm{~m}^{3}$ par year. This is broken up into the various utility classes as below, based on bercentage of each utility class in the trees.

As no tree fellings wore possible in Manipur, we have adopted the utility percentaje from the Tripura studies. From the total volume of each utility in each dia. class above 60 cm . we have arrived at the following percentages of each utility in total trees over

- $60 \mathrm{~cm} . \mathrm{dia}$. 0 .b.

Plywood
Timber
Pole
Pulp + Fuel
No utility
17.9多 i. θ. logs over 40 cm . mid dia. under bark.
6.6% i. E_{H} logs 20 m 40 cm . midndia. u.b.
1.6% i.e. $10-20 \mathrm{~cm}$. do-
66.1馬 down to 5 cm . dia. o.b.
7.8% Generally stump + rotten parts i.e. cull volume.
100.0
--

- 38 -

Applying the above percentages to the total volume yield we get the following volumes in each utility class in this forest type.

Plywood	$:$	$17878.276 \mathrm{~m}^{3}$
Timber	$:$	$659.990 \mathrm{~m}^{3}$
Pole	$:$	$1598.058 \mathrm{~m}^{3}$
Pulprood	$:$	$66019.781 \mathrm{~m}^{3}$
utility	$:$	$7790.533 \mathrm{~m}^{3}$

Checking the yield of $99,878 \mathrm{~m}^{3}$ against the total standing volume of $158,23,504 \mathrm{~m}^{3}$ for this straturn, the theoretical Rotation by Von Mantol's formula ($y=2 G S$) works out to 316 years. Thus R
the yield is in no way an overestimate. The safety margin is also necessary in view of the Silvicultural requirenents of these high level forests as many trees athorwise harvestable have to be retained on silvicultural grounds.

7.2.3.2. The Pine Forestse

In the forests of Pinus kesiya, which are at a lower elevation than the Wet Temperate Forests and which are also a little more opeñ, the 't'i.e. time for all trees to pass from pre-selection to seloction class is assumed as 25 years. The felling cycle remains the same i.e. 30 years, and $Z \%$ is also the same i.e. 25% incIuding losses by fellings otc. and retentions due to silvicultural non-availability

$$
\begin{aligned}
& \therefore \quad x=\frac{-30}{25}(\text { II- } 25 \% \text { of II }) \\
& \quad \text { or } \frac{-6}{5}(75 \% \text { of II })
\end{aligned}
$$

Class I are 50 cm . \& over.
Premsclection dia: class: Olass II is $40-49 \mathrm{~cm}$. This assumption is based on tho observations in the field that trees beyond 50 cm . dia, are very few. The yield is calculated separately for Pinus kesiya and the rest of the species in pine stratum.

Pinus kesiya

$$
\begin{aligned}
& x=\frac{6}{5}\left(\frac{723540 \times 3)}{4}\right. \\
& =651186 \\
& y=\frac{\operatorname{Class}_{-} \frac{x}{-\frac{X}{2}} \times N_{0} .}{x} \\
& \mathrm{~N}=578741 \ldots 30=19291
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{651186}{578741+325593} \times 191 \\
& =13,891
\end{aligned}
$$

i.e. 13891 trees of 50 an. and, over will be available every year,

Of thëse 17.36 will be of dia. class $80-89$ and 82.64% of dia. class 50.59. Two intermediato dia. classes have not apocared in the sample.

Tho avoraco volume/tree for $80-89$ dia. class is $5.508 \mathrm{~m}^{3}$ and for $50-59 \mathrm{~cm}$ dia. - $1.962 \mathrm{~m}^{3}$. Thus the total volune available will be

$$
\begin{aligned}
2411 \times 5.508 & =13279.788 \mathrm{~m}^{3} \\
11480 \times 1.962 & =22523.760 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\text { Total }=35,803.548 \mathrm{~m}^{3}
$$

The total g.s. under P.kesiya being $4717745 \mathrm{~m}^{3}$ the rotation for this by Von Mantel's formula works out to 262 years. This confirms that there is no over ostimation. The actual rotation would be much lower than this.

Nö information is availabie about the utility break up of the totalwlumo under Pinus kosiya. Studies on P. armandii done by the East Zone of this organisqtion indicate that in $50-59 \mathrm{cms}$ dia. class, the percentage of pulpwood (i.c. under 30 cm . dia) to total usajle volurne is:32\%; and for $80-89 \mathrm{cms}$. dia. cless it is 20.5\% The no utility volumo is found to bo 7.8% in our studies constant over a wide range. Applying those percentages to the total volume undor each dia. class the following breakup is arrived at :

Timber utifity i.e.

$$
\text { wood over } 30 \mathrm{~cm} \text {. diam. u. b. }
$$

$$
\begin{aligned}
& =23947.612 \mathrm{~m}^{3} \\
& =9063.260 \mathrm{~m}^{3} \\
& =\frac{2792.676 \mathrm{~m}^{3}}{=35803.548 \mathrm{~m}^{3}}
\end{aligned}
$$

Fulpwood utility i.e. under
30 cm . dia. and down to 5 cm . , $\mathrm{d} .0 . \mathrm{b}$.
No utility
Total
"Broad loaved trees in Pinus kesiya forests.
P. kesiya forms 23.6% of the total no. of troes in the Pine stratum but in volume it constitutes 51.8\% of the total. The utilization of broad loaved spocies in this stratum is sinilar to that in other strata but very different from that of P_{0} kesiya. It appears that the broad leaved trees in this stratum also are very few in tho uoper diameters and so the same diemeter i.e. 50 cms. is takon as seloction diameter. In class I thero are 289,296 trees and in class II i.e. 40-49 ons. thore are 361,619 trees.

- 40 -

Applying Snythies: safeguarding formula the no. of trees to be cut are as follows :

$$
x=\frac{6}{5} x(3 / 4 \times 361619)=325,457
$$

and $y=-\frac{325457}{289296+162728.5} x .9643 .2$

$$
=6943 \text { trees. }
$$

The distribution of these trees into dianeter classes in harvesting is as below for the wholo felling cycle.

$90-99 \mathrm{cm}$.	72324 trees
$70-79$ d.	135996 trees

and therefore per year

$90-99$ ch.	2411 trees
$70-79$ ch.	4533 trees

The effective selection diameter is themefore 70 cha obe

The volurne per tree is $6.126 \mathrm{~m}^{3}$ in $90-99$ cra. die. class and $3.848 \mathrm{~m}^{3}$ in $70-79 \mathrm{~cm}$. dia. class. The total volume available Ainnually is thus $32212.770 \mathrm{~m}^{3}$. The utilitywise breakup of this volume is as below:

Plywood	17.9%	$5765.948 \mathrm{~m}^{3}$
Timber	6.6%	$2125.992 \mathrm{~m}^{3}$
Pole	1.6%	$515.392 \mathrm{~m}^{3}$
Pulp	66.1%	$21292.132 \mathrm{~m}^{3}$
No utility	7.8%	$2512.536 \mathrm{~m}^{3}$
Total	-100	$32212 \mathrm{~m}^{3}$

By Vom Mantel's forrula the rotation at this lerel of exploitation for broad leaved trees in Pine stretin works out to 273 years, as against 262 years for Pine.
7.2.3.3. The Wet Hi 11s Forest.

These are luxuriant forests at the same elevation as the Fine forests. The dianeter for the class I trees is asemod at 50 cms . and the timo to pass into this elass from the next lower class is assumed as-25 years._

- 11 -
$Z \%=25$ i.e. mortability etc. in passing to next clnss.
The total no, of trees above 50 cias dia, are

$$
3,123,594=\mathrm{Class} \mathrm{I}
$$

The total no. of trees of $40-49 \mathrm{cms}$ dia. aro

$$
3,634,918=\text { Class II }
$$

$N=3123594 \div \quad .30=104119.8$
$x=\frac{6}{5}\left(\frac{3}{4} \times 3634918\right)=327.1426 .2$
$y=\frac{3871426}{3123594+1635313} \times 104119.8=715,69$ trees
The total yiela in 30 years will be 2, 147, o70 trees, which will consist of all trees above $70^{\circ} \mathrm{cm}$ dia, and 329,414 trees frôn 60-69 dia. class out of a total 624, 562 trees in that class or noarly 50\%. The actual exploitable dia therefore works out to be 60 cme $0 . b$ although class included trees of 50 an 59 an.

The annuel yield will therefore be

The total volume available is therefore $415,093 \mathrm{n}{ }^{3}$ which is broken up into the utility classes as below, on the some proportions as usod for other types:

Plywood
Tinber
Blo
Pulp
No utility
Total
$74301.647 \mathrm{~m}^{3}$ $27396.138 \mathrm{~m}^{3}$

$$
6641.488 \mathrm{n}^{3}
$$

$$
274376.473 \mathrm{~m}^{3}
$$

$$
32377.254 \mathrm{~m}^{3}
$$

$$
415,093 \mathrm{~m}^{3}
$$

Tho total volume in this stratum is $35545935 \mathrm{n}^{3}$ and annual yield is 415093 m . On Von Mantel's formula the rotation works out to 171 years which conrims that our yield is not oxcessive. The actual rotation silviculturally may be near. 150 years.

7.2.3.4. The Sernimevorgreen Straturn.

This stratur occurs at the lowest elevations and the original forcst is left in a very few localitiuso The vegetation is quite good and rate of growth nay be same as in the Wet Hill type. There-

Glass I trees aro taken as the trees above cu. dia. as in previous stratua

$$
\text { Class I trees }=\quad 608.763
$$

Class II $(40-19)=$
338,216
$\mathrm{N}=$
20292
$x=$ works out to 30.694.4
and $y=$
$\frac{.}{608763}+\frac{304394.4}{+152197.2} \times 20292.1$

$$
=\because \quad: 8,117 \text { trees }
$$

The yield in 30 years will be 243515 trees, which can be harvested by removing all trees of 100 ts $80-89$ and $70-79 \mathrm{~cm}$. dia. classes, and 6, 779 trees only out of 236,734 trees of $60-69 \mathrm{~cm}$. dia. the effective soloction dia, therefore is 60 cr. o, bes which is sion where these forsst occur worling plan for the Westorn divi-

The annual yield will be as follows:

Checked by Von Mantel's formula with the total volume in this stratum the rotation works cut to 214 years. The actual yield is not excessive.

Tho utilitywise breakup of the totell volune is as below :
Plywood
Timber

	$=$	7211.194
	-	2658.876
	-	$644_{0} 576$
Total	-	3142.046
		$40,286 \mathrm{nn}^{3}$

7.2.3.5. Teak Gurjan Stratur.

This is the poorest of all broad leaved strata. No trees of larger dianeters than 80 cm . were found. No teak tree was found in the stratum.

The ' f t and 't' and $Z \%$ are as in the previous strata. The class I trees are taken as from 50 cm . dia. and over and class II as $40-13 \mathrm{~cm}$.

In 30 years 341829 trees will be available i.e. all of 70,79 and 60-69 and about 60% of $50-59$ class. The effective selection diametar will bo 50 cme o. be the annual cut will be

Dia class	No. of trees	Vol/tree	Total volume
$50-59$	6392	1.866	11927.837
$60-69$	1701	2.730	4645.194
70.79	3101	3.850	13095.864
	11494		$29,669 \mathrm{~m}^{3}$

Checked against total volume $3278608 \mathrm{~m}^{3}$ in this stratum by Von Mantal's formula, the rotation works out at 221 Years, and as the silvicultural rotation is sure to be less - nay be 175 years or so, the annual cut is not excessive.

The break up of the total volune into utility classes is as below :

Plywood		5
Timber	\cdots	5310.751
Pole	\cdots	1958.154
Pulpwood	\cdots	474.704
No utility	\cdots	19611.209
Total	\cdots	2314.182

7.3.	Total Smong Qut : Simber						
7.3.1.	The total utilitywise availability of broad leavod wood from the Menipur forests is therefore tabulated as below:						
	-			in m^{5}	-		
Ui¢ity	Stratum	Wot Tcaporates	Pine (b.yoad Leav゙ed ixes only)	$\begin{aligned} & \text { Wot } \\ & \text { hill } \end{aligned}$	Pvorgxeen	Teal Givija	Total
Plywood		27878	5766	745 C 2	72.11	551.1	110468
Timber		65.92	21.26	27:36	2359	1958	40731
Ple		1.5\%3	515	664?	(3)5	475	9875
Pulp \& Fual		660:0	21292	274576	7.3090	16011	407938
No utility		780	2513	52377	3142	2514	48136
Total		99373	32212	4.15003	40283	25069	617 ± 38

7.3.2

The uijlity bicalrup of conirarolis timber Finus kesiya into timber, puip - fusl and 'no utility' groups as belon has been adoptad from the witios on Einus amandij of Lrumachal Pradesh by the Basterm Zomen thise is tho only conifor suudies ror this data in this region. Bused on this data the break up of the total available volume of couftiferous rimluer is as below:

Fine timbex	$23018 \mathrm{~m}^{3}$
Pine pulpwood/fuol	$9053 \mathrm{~m}^{3}$
Fo unitity	$2792 \mathrm{~L}{ }^{\text {² }}$
Toiat	$0_{5} 503 \mathrm{~m}^{3}$

Annusl Gut of Bamboos:
As explained in the previous Chapoers the sustaimed annual yield of bamboos is taker as tho annual rearuitraent, which is about 15\% of the tota-. strck The yicla worked out by the state Forest Department alio is $y / 6 t h$ of the growing stocl:

As in this we news anciysed the gnowing stock by age and diameter classes, wo heve a breslup of the dianeter distribution in the harvestable ago class Wo consider culns undor 2 cm dia. as silvicuiturally not available.

$$
-45-
$$

The annual recruitment has not bsen classifisd into dianeter classes, as the tine of sampling for assessing the woight of the recruitnent at maturity we have distributed them by the dianoter class percentage in the harvestable class, then applifod the green weight and dry woight factors of each class and computed the air dry weight in tonnes per hectare, of the annual yield, and this multiplied by the area of the boboo stratum gives the annual availability of the bamboos. The details are given below :

7.4.1. Kult bamboo (Molocanna basifera)

The percentage distribution in dia classes of nature culms is as below:

Under $2 \mathrm{~cm} . \mathrm{dia}$.	17.71\%
2 to. 5 cm . dia	74.13\%
5 to 8 cm dia.	8.16\%
Total	100\%
Annual recruitment/ha.	532. 1 cu

Green	Air dry	Total
veight	welght	Kgs. $/$ ha.
per	factor	(Air dry)
culm.		

Therefore culms under 2 cm . dia.	$=271.33$	-		-
Therefore culms under 2 to 5 cm .				
dia.	$=1135.75$	3. 913	63.82\%	2836.523
Therefore culas undar 5 to 8 cm .				4
dia.	$=125.02$	9.158	57.83\%	662. 144
				3498.667

The annual air dry (10% moisture) yield per ha. of muli bamboo is 3498.667 kg . The total area of the muli stratum is 326843 ha.

The annual total muli yield is therefore 11, 43,296 tonnes
7.4.2. Glump Forming bamboos.

In the case of clump forming bamboos, the annual recruitinent is 16.5% and is just $1 / 6$ th of the total growing stock, as adopted for yield calculations in the state. We therefore take the annual recruitment as the yield. The recruitment is distributed into diameter classes, as for Mili.

Annual recruitnent is 152.829 culns/ha.

Green weight in Kg. per culm.	Dry weight factor	TotaI Kgs./ha. (air dry)
-	-	-
-	-	-
5.635	62.03%	362:608
14. 129	50. 31%	224. 529
34.842	40.77\%	63.810
		670.947

The annual air dry (10% moisture) yiold of clump forming bamboos per hectare is thus 670.947 kg . ha. These bamboos occur under tree forests and hence their donsity is much less. The total area under this bamboo is 459439 ha. overlapping tree forests and the annual yield is $3,08,259$ tonnes or 3.08 Iakh tonnes air dry (10% moisture).
7.5. Total Amual Cut of Banboo.

The total bamboo potential therefore is 14. 48 lakh tonnes per annum. air dry weight.
7.6. Ovorstocking in bamboo.

There is howover a large surplus stock of bamboos because the forest have not been exploited. As against a theoretical stock of six times the anmual cut i.e. 20.988 tonnes/ha. the muli stratum has a. stocking of 29.367 tonnes. $1 s$ against 4.026 tonnes for the clump forming bamboos the total stock is 3.993 tonnes/ha. Howover, the normal cutting cycle for bamboos ins 4 years and then the surplus growing stock is 15.375 tomnes/ha. in muli and 1.309 tonnes/has in clump forming bamboos, which are availeble for liquidation in the first cutting cycle.

The annuaz yield in the first cycle will therefore be substantially higher. In view of the vast potential of bamboo that unfolds before us, any further higher yeila in the first cycle is of little interest.
7.7. The Hood balence.

Wo data is available to determine the necessities of timber, fuel and bamboos of the local popilation. at present, there is no record of forest production or exploitation to assess these needs. The needs are nevertheless met from the forests at the will of the people.

For our assessment we assume that the average per capita requirements are as below. :

Firewood $\quad-\frac{2}{2} \mathrm{~kg}$. per capita per day.
Timber $\quad-.028^{\circ} \mathrm{m}^{3}$ (1 cu. foot) per capita
(including per year. poles) . .

Banboo - 50 bamboos per capita per year.
The population of Manipur as per 1971 Census was 10, 73,000. On the above scales the internal consumption works out as below
(rounded off for (rounded off for convenience).

This leaves a surplus of plywood class timber i, e. ovor 1, 10,000 m ${ }^{3}$, about $10,000 \mathrm{~m}^{3}$ of saw timber, about $1,17,000 \mathrm{~m}^{3}$ of pulpwood from broad leaved species and $23948 \mathrm{~m}^{3}$ of Pine timber and $9063 \mathrm{ma}^{3}$ of pine pulpwood, and 12.87 lakh tonnes of banboo.

GHAPTER - VIII

IMDUSTRTGL RECONMENDUT TCNS

$\alpha=\sim$ wr the results of the inventory survey, the following different resources are available annually :

Raw material

1. Sew timber
2. Plywood Glass timber
3. Pine for timber use
4. Hardwoods for industrial use
5. Pinewood for industrial use
6. Banboo (Total)

Buantity

$$
\begin{array}{r}
10,000 \mathrm{~m}^{3} \\
1,10,000 \mathrm{~m}^{3} \\
23,948 \mathrm{~m}^{3} \\
1,17,000 \mathrm{~m}^{3} \\
9,063 \mathrm{~m}^{3}
\end{array}
$$

$\xrightarrow{12,87 \text { lakh tonnes }}$

Fron the above figures it can be obserred that there are vast and varied resources of wood and bamboo avai lable in surplus which unfortunat aly have still not been put to any economic/ commercial use. The stata of Manipur is one of the lesser developed States of the country with a propulation of according to 1971-72 Census, 10,73,000. Eoploymont opportunities are rather poor. The forestry resourcea therefore, oflara a vary good opportumity to provide lot of amploynent by creation of an intograted type of forest industry. For the time being it is recomrendod thet the mills of the following types and capacities may preforably be smtanted.

S.No.	Type of Millproduction	Requireds wood/barmbo	Out turn expocted.
1.	Sav mill/ 16000 cu . m . Pine \& Hard wood	$33948 \mathrm{~m}^{3}$	$16000 \mathrm{cu}$. m.
2.	Plywood/137500 sq. It.	$110000 \mathrm{~m}^{3}$	137500 sq.m.
3.	\# Fardboard/20.6 m.sq.m. Particile"/ Ghip board/	$71135 \mathrm{n}^{3}$	
4.	Integrated 400 tomes/dry Pulp \& Paper/News Print Endustry or 250 tonnes/day writing \& printing Paper.	100 tonnes Handwood + 390 tonnas	-
		bemboo per day or	
		600 tonnes/da of Bamboo Her	dwood

The waste of Saw nill, plywood \& Paper mill will bo used for thise

Thus above set up, proposed, will probably be one of the biggest wood-based industrial complex in the country and would provide aployment opportunities direct and indirect starting from tree to be market to about 2 lakhs which means that nearly $1 / 5 \mathrm{th}$ of the population of the State will be mployed almost cent per cent on the basis of the various resources.

The picutre is, however, still further rosy because even after cetoring to the requirements of the various typos of productions mentioned above, thore will still bo a surplus of about 12 million tonnos hardwoods and bamboos which can be sunt out of tho stata to other raw material consuming statos of Bihar and Wost Bongal which are starving for thoso rosourcos.

BIBIIOGRAPHY

1. Techno economic Survey of Manipur

- N.C.A.E.R. 1961.

2. Plant funter in Manipur

- P. Kingdon Ward.

3. Silviculture of Indian Trees.

- R. S. Troup.

4. Forest Types of India

- H. G. Champion \& S.K. Seth.

5. Monocoty ledonous plants of Manipur Territory

- Dr. D. B. Deb. Botanical Survey of India - 1961.

6. Working Plan for the Western Forest Division -- Manipur.

- S. Tomchou Singh.

7. Working Plan for the Eastern Forest Division - Manipur.

- N. Kunja Singh.

- 51 -
 Aopendix Ima
 MAN IPUR SURVEX - FIELD MADUAL

DESTGN OUTLINE:

The manipur survey is rendered a little more difficult because of absence of maps showing area boundaries of forest and also because the total area under forest is not known with any accuracy. This means that we have to assess the total area, and each type of forest for assessing the total volame available in each stratum.

For this purpose, it will be necessary to go-over the entire area of Manipur State and visit grid intervals at $1^{\prime \prime}-15^{\prime \prime}$ and classify the points into one of the strata as given later on. This will be a Recce with means of helicopter for the area assessment.

As far sampling, the design will be vory sinilar to what was used in Tripura. It will/ randan sampling after stratification with grid distance at $1 \frac{1}{4}$ ninutes x 1- $\frac{1}{4}$ minutes. The laying out of grid points will De done by the Draftsman before the sheets are honded over to Grew Ioaders.

This pattern is adopted because of the shortage of time and because photographs of the area have not yet been availeble to us. If the photographs are available early, the areas of various strata will be obtained by photointorpretation, if possible. As the photographs are over 8 years old, these photographs will not represent the position as existing on the ground today. The strata for photointer oretation will be as follows:

1. Areas having tree stocking below 40% (0.40) will be considered as understoclied. Narrow belts of trees along water courses in large expances or under stocked area will not be considered unless over 50 ha. in one pateh.
2. Areas having more than 40% tree density considered as well stocked provided they are in patches of over 50 ha .
3. Plantation stratum having areas of planted bamboo, teak, gamar, sal etc. The area and yield may be obtained from departmental figures for uptodate dats.
4. Pure bamboo stratum i. θ. old jhumed areas with regrowth of bamboo with isolated trees. Thin strips of forest along stream banks will be ignored.

- Gultivation and other unproductive lands, revines, treeless areas etc.

Muli bamboo will be counted over Northern half of the plot. In the north half of the north-west quadrant as show in the diagram, all muli bamboos will be enumerated by age classes and diameter classes. Fr case of clump forming bamboos the clump will be counted by clump diameter classes over the entire plot and entered in the tree enumeration form. In the entire north west quadrant the clumps wi Il be sampled in details for total number of culms available by age classes, utility pattern, diameter classes etc. In case of current year s culns of both muli and, clump formers the diameter classification will not be made es growth will not be completed in all the areas, especially if the survey has toLcarried over to the next year; Diameter classififation of culms will be done for muli bamboos and clump forming bemboos, both, In the case of torder clamps those which are more than half insjiq日 the plotivill be totaliy counted and those les than half be done in southern half of northwest quadrant.

Bamboos will be divided into the following diameter classes

- under $2 \mathrm{~cm}, 2 \mathrm{~cm}$. to under 5 cm ., to under 8 cm , and 8 cm . and ovēr. The bamboos fron each diameter class for muli as well as clump forming bamboos will be falled at 0.25 metres above ground to correctly measure the total utilisable length down to 2 cm . diameter. Total length of the bamboo will not be recorded. The green witght of each culra whll be recorded. Experiments for green woight to dry weight ratio are also to be taken as done in Trixura. For this purpose, 3 sections of one metre length each will be cut from one of the felled bamboo of each dịameter class, one from bottom, one at the top, and one at the middle section of the bemboo and this will be weighed on the spot to the nearest 5 gms. The sample will be marked with grid number, species code, date of initial weighment and dianeter class in paint and tied with bark of the same species of bamboo; before weighing. These bundles will be sent to base camp for further action. The Manipur area is very hilly and also cut up, in the western part, because of which a large number of trees although existing on the ground, will not be silviculturailly avai lable for felling. In recording the enumeran tion data, it will be considered as to whet her a tree which is existing on the ground is silviculturally available or not and will be coded accordingly. Sinilarly, in many of the jhum areas large trees are some-time standing isoleted and at great distances from each other and although these have bean included in the standing volume it may not bo possible to axtract them economically when it comos to exploitation, for process of pulp. "Such economically unavailable trees should also be similarly coded to avoid over estimation of avaiLable volume.

SPEGIAL STUDY:

Special study for tree volume equation will be carried out as done in case of Bhandara. The dianeter classos will be as under :-
$10=19 \mathrm{~cm}$
$20-29 \mathrm{~cm}$
$30=39 \mathrm{~cm}$
$40-49 \mathrm{~cm}$
$50-59 \mathrm{~cm}$
$60-69 \mathrm{~cm}$
$70=79 \mathrm{~cm}$.
$80-89 \mathrm{~cm}$.
$90-99 \mathrm{~cm}$.
$100-120 \mathrm{~cm}$
$120-\mathrm{cm}$. and above.

In each diameter class minimum of 4 trees will be needed to arrive at a prover volume equation. The siecies for which the data are to be cellected are being given separately.

Cull study will not be done due to lacl of time.
The utility classes into which the tree v-lume will be classified will be, plywood, timber, poles, pulpwocd, fuel and no utility.

MANIPUR SURVEY

CODING INSTRUCTIGNS FRR FIELD WORE

1. PLOT APPROACH FORM.

Includes lines for time als. The tums is t. be given in hours and minutes by the watch as given in R : j guay, time table e.s. start in the mrming at 7.30 A.M. will be shown as 07.30 and the time of returning to camp at 4.30 p.m. will be shown as 16.30 hrs. Tao ferm will be filled up while in propress to the plot and bach. If the olat has to be visited m two successive days a fresh form will be filled up $f=r$ the and day also.
II. PLOT DESCRIPTION FORM (Data to be coll scted from two ha.area)

Some chankes have been made in the classification from that adopted in Trimura. The coding should theref?re be d-ne carefully.

1. Job No. (col. $1 / 3$) - Throo digit code number to be filled in by DPU wilich will , be different for each
凸
2. Card design - Thn digit cede number to be filled in ($\mathrm{c} \cdot 1.1 / 5$) by DPU to distinguish different types of forms as given below :-

06 S*acial Study Foren
3. State (G-7)

- Thr dagit code number t~ be filled Fror the present survey in Central Zane the code numbers of the Stotes in which this Survey falls, are as under :-

State
Tripura
Manipur .-

- Tun digit cade number to be filled in for each forest division in the state and the Forest Division will be coded as under :-

Forest Division.
Northern
Northern Snil Censervation

Some errmples:

1) Siaftints cilltivation
ii) Absndroned shifting cultivation (old Jhum)
iii) Fern Forasts
iv) Permanent cultivation.
v) Grass banks.
(Jhum) Siaftanc oultivation currently under crop or just barvestad at the time of inventory will be classified as (s) current Jhuri.

Site ovored with tree or scrub/bamboos/ grass griwth of any density will be classifled as forest land.

Farm forests if less than 0.5 hectare will be classified as asricultural tree land and farm forests having an area of more than 0.5 hectare will be treated as forest land.

In Forest village (within reserve forest) will be classified as agricultural crop land.

Fncl-sed by reserved forest brundaries will be classified as forest because primary functien is not pasture or grazing but "forms part of forest land.

One digit code number will be filled in as under :-

Description

As per definition in Indian Forest Act.
Unclassified as reserved forest or protected forest but Govt. Iand bearing forest crop-even if under other departments. National parks and forest areas where fellings are restricted b_{*} legislation.
Forests land and Agricultural tree land owned by private individuals, community or corporatinn.
6 Undetermined

7 General Topography (col.12)

Code

1
2
3
4

Any forest land which could not be classified in to any of the above categories.
General topography of the area surrounding the plot will be examined on Survey of India $1^{\prime \prime}=$ Mile toposheet. For this purpose terrain conditions in a minimum area of 6 to 8 square kilometers shall be viewed. Item
Filat.
Gentily rolling
Hilly
Very hilly
8) Slope (cot. 13)

- Slope of land around the grid contre will be cetermined with the help of $\frac{2}{2}^{\prime \prime}=1 \mathrm{mile}$ survey of India topsheets about one square low. will be classified as belonging to ne of the following abnve classes.

Code	Itan
1	Less than 10%
2	$13 \%-30 \%$
3	$30 \%-100 \%$
4	$100 \%+$

9) Position on slope
($\mathrm{c}=1$. 14)

- The position of plat will be examined on $\frac{1}{i^{2}} 1=1$ mile toposheet and its positinn with reference to hill slope on which it is located will be classified as :-

Code	Itern
1	Ridge top
2	Upper one third
3	Middle one third
4	Lower one third
5	No slope
6	In shallow ravines (over 5 meter high)
-7	(depth of ravines (over meter high)

10) Aspect (col. 15) - For two hectare area of plot.

Code	Item
1	Northern
2	North Eastern
3	Eastern
4	South Eastern
5	Southern
6	South Western
7	Westirn
8	North Western
9	No aspect For flat Land.

- Stoniness refers to land surface in a two ha. area around the slot which is covered with massive stone or rack making the area unfit for growth of trees. Small nieces of broken stmnes and pebles which are loose or the ground will not be included as stones. The various classes ander which the stこniness will be classifiedaro under:-

		Exelude
		a) Areas occupied by orchards, parks, private gardens, and pastures;
		b) Az ns cccupied by isnlated tree gr~ups smaller than 0.5 hectare.
		c) Areas of wind break and shelter groups on narrow strips e.g. tree along road sides canals and streans which are ton small to be nanaged as forests.
2.	Open Forest	Open farest areas with troo covor from 20 ot to a lower linit of 5%. It may have undergrewhth of tree suecies or shrubs of any density. Open forest with bamboo under growth not to be included here.
3. 4.	Tree in line	$T x=y$ in line: along canal bank wind break and shelter belt.
	Bamboo brake	They will be bambon areas secondarily caused due to jhuming in the past. Bambcos are well established and are in exploitable stage. There may be isolated trees standing, but their density will be below 20\%.
5.	Grassy blanks	Oon areas of forest with tree density below 5% and high grass apparently the result of old and repeated shifting cultivation.
6	Others	Any areas which cannot be classified in any of the above categories.
18) 囚rigin of stand (c 1. 23)		Depanding $=n$ its orgin stand will be classified as belonging to ne of the fかllnwing classes.
Code	Item	$\mathrm{D}: \mathrm{Sc}^{2} \mathrm{z}$ ticn.
1	Natural Forests	Forests naturally grown frrm seed.
2	Marmade forest	Whare forests are out cnme of plantation.
3 3	Natural \& artificial.	Forests partly natural and partly man made e.g. natural forest supplemented with artificial regeneration.
4	Jhum Regrowth	Old jhum restocked either with tree, bamboo or grass.

19) For	po (cr1. 24)	- Forest type of the plot will be described for the plot and a surround of 2 hectares. The tyss if Forest areas explained below.
code	Item	Doscription.
1.	Wet temperate Frrests.	Soe deseription after Code 5.
2	Pine Forest	This corrosponds to Champion's Assan Sub Trovical Pine Forasts and the species is pinus l, isiyd. This tyos will be found only in Nיrth Eastern qnid sourtherm narts at high elevation batween 1700 to 2000 metres. It is easy to rec enise this ty-pe of forests.
3	Wet hill forests	This corresponds to $\mathrm{CH}_{\text {tamninn's Khasi }}$ Sub-Tronical wet hill forests and is found in upper slopes of hills including the top, where thoy have not been denuded. Tha species found are Saurauja, Beilschmiedia, Schima, Cinnamanm, Litsaca, Mnchilus, Quercus, Castanopsis, Lithocaryus spicatus, Phoeba lanceolata etce. This type can be found below pine Frrests between 900 t 1700 metres clevation.
4	Semi Evergreen	This corresponds to Champion's Cachar Tr~pical Semi Evergrean Forests and is found in western part of Manipur adjoining Silchar. Tho spocies are Artocarpus chaplasha, Dipterocarpus turbingtus, Dallaquium pnlyanthum, Cynometra polyandra, Eugenia, Vitsx, Chukrassia, Tetrameles, Gmolina, Adina etc., under growth of Muli Bambco may be present.
5	Tcal: Gurjan Forest	This corresponds to Cismnion's Cachar Tropical Scmi Evargreen anc is found in along the Burna border. Garjan is associated with teak, species are Gurjan, Hollock, Teak, Xylia Dillenia, Lagerstroemia Terminalia, Gmelina, etc. Muii bamboo may bo presmat. Many of these areas have degenerated in to bamboo brakes due to Thuming. These forest may be found approximately between 100 to 900 metres.

Code	Item	Description
1	Wot Temperate Forests :	- Tinis corresponds to Champion's East Hinelayan Wet Tonperate Frrests. These are found in localised areas at an elevation of 1700 to 2700 metres. Sirccies are Quoreus lemellosa '1. Iineata Michelin, Acrir, Lionea spo, Mfyolia Mangilitia, Prunus, Pyrus, Bucklandia fopulanea, B=tulalnoides, Alnus
7	Bambeo brakes	Pure bamboo area. Trees under 20\%.
8	Others	Arens that can not be classificd in any of the above categories, will be put in here.

Bambnó brakes \& Grass lands, apparently look Iike separate forests types but are in fact degradation stages of one or the other above said forest ty-pes, and as such, have to be classified under one of them, with reference to elevation, Rian fall and surpeunding vogetation.

20.	No. of Storeys (col. 25)
Coce	Iterî
1	Forest one storeyed:
2	Frrest tow storeyed.
3	Forest Throc or more storeyred

21. \quad Top height $($ col. 26-27)
22. Top height

The number of storeys describes the vertical distribution of height in the stend. Tho classes are :-
Doscription

A small height veriation may exist even in one storeyed forests.
Tho variation in height is large and the trees can be grouped into one upper and orie lower canopy.
Tize variation in height is vory lexgo and

- In most cases it is not possible to group the trees in canopies.

Ocoularly estimate the average height of predominant and codominant trees surrounding the plot within an area of two hectares, round the plot within an area of two hectares, round it to the nearest 5 metor and record the height. Tia cceular estimate must be checked by measuring few trees (5 for 2m3) arong prodminant codominant and dominant trees in, the stand, If the average height of the trees is 27 metres, than round it off to 25 metres and record the same.
Example 2
If the average height of trees is 28 metres then round it off to 30 metres and record the same.

Number of trees standing in 2 hectare area will be occularly estimated and compared with above tabies and classified in one of the following class :-

-.63-	
Sw.itchy culm	Is no which is more then 2 mt . long and 1 to 2 cms. at b.h. (1.37 ms). Arundinaris maling bambec is not to be sampled.
Utilizable culns	A utilisable culm is one which is two meters or more in length and more than 2 ans. in dimeter at 1.37 meter height.
Definition of alump:	An aggregate of more than one culm is known as a clump,
N. B. In Melocanna bambusoides (a non clump f-rming bamboo), its individual culms will be treated as clump for enumeration purposes.	
Occurrence (col. 38)	One digit code number will be usod. The stocking of the species finding place in col. no. $35-37$ shall be filled in. The stocking, among the various species of bamboos found in the 2 ha. plot. Tis total of the percentage must be 100 ($90-108$) whether there is only one group or more than ne group. Occurrence below 10% is to be ignored.
Code.	Stocking
1	10-19\%
2	20-29\%
3	30-39\%
4	40-49\%
5	50-59\%
6	60-69\%
7	70-79\%
8	80-89\%
9	90-. 99\%
Howering (col. 39)	The following details will be filled.
Gode	Details.
1	Sporaic
2゙い	Gregarious
3	No flowering

Bamboo bearing areas where clump formation is not very clear or area under bamboo regeneration containing bamboo seedlings in one of the following classes:
However in case of muli bamboo prosentee of seedlings will indicate regeneration.

Gode	Details
1	Dense regeneration
2	Medium
3	Scattered
4	Absent

Group II Cols. 41-46) Next four groups of codes fron col.41-64 are Group III $47 / 52$) to be filled in the same way as prescribed for Group IV $53 / 58$) col. 35-40 for bamboo species of lesser occurGroup V 59/64) rence than Group I in the order of occurrence.

Grid No. (col.77-80) Here the serial no. of the grids as in appendix will be filled in.

CHAPTER = III
PLOT ENTMERATION FORM

1. Jcb (col. 1/3)
2. Card design (col.4-5)
3. Sample grid no.
(col. 8. $=9$)
4. Total No. of trees
(col. 10-11)
5. Total no. of
clumps (col.12-13)
6. Total number of culms (col. 14-17)

This will be filled in by D.P.U.
-do-
The grid No. will be filled in here in 3 digit code.

Here thtal No. of trees nccurring in the plot will be recorded in 2 digit numbers.

Here the total number of bamboo clumps of all species occuring in the plot will be. recorded in 2 digit code.
Here the total number of culns of non clump forming bamboos will be recorded. 7. The enumeration form is divided in to 9 bections of 7 columns each. The columns are also horizontaly divided in to 4 rows, so that as many as 36 trees/clumps an be recorded on one sheet. If necessary a 2nd sheet may be used for more trees/clumps. Each sections will section, the local one tree/clump only. In the upper part of the The rest of the section botanical name of the spocies should be written. in 3digit, diemeter in ons. in 3 filled up with the species code, 1 digit.

Diameter measurement will be to the nearest om. at 1.37 m . above ground on the up hill side of the tree. The axis of the calliper i.e. the long arm should be pointing to the centre of the plot. If there is a considerable fon re at the base of the tree above the b.h. the diameter, will bo noasured abovo flare. For troes above 50 cm . diameter, a diameter tape may be used. In case of forming resulting in 2 or more stems, starting below the b.h. the diameter of each stem will be taken at b.h. or at trees will also be where they are distinctly separate. Dead utilisable.

The diamoter $\rightarrow f$ bamboo clumps will bo rocorded at the base, and only clump forming bamboos will be recorded in the sections.

All callipered trees/bamboos will be marked by blaxing. Border lino trees :- Trees the stems of which touch the N.W. and S.W. lines of the plot will be treated as "IN" trooe and will be enumerated. Those of which the stems of which touch the and will not be enumerated. '.

Shrubs and small trees are not to be enumerated.

Conde	Availability	Description
1.	Available (both silv. + Economically) (over $30 \mathrm{cms}_{n}$)	Trees whose harvesting will not cause a permanent gap and which will be econamically harvested。
2	Not available (ecenomically)	Trees available silyiculturally but far way (mnre than 100 mt .) from the next available tree and hence economically not available.
3	Not a-vailablc (silviculturally)	Tr. es not available in silvicultral grounds, though in . close groups.
4	Not available(Econo mically nnn-silviculturally	Trees which cannot be availabie either silviculturally or ecnnomically.
5	Dead but available	Dcad trees, no longer growing but at'least 75\% utilizable。 Such trees are alwqys silviculturally available but may not be econamically available, in which case they will be omitted from counting they will be counted only if economically available.

IV SAMPIE TREEE FORM

The only plot in the grid will be sample plot. Trees, 40 cms. D. B.H. and above will be measired as sample tree from all over the plot. Trees from 10 cms . D. B.H. to 39 cms . D. B.H. will be measured as sample troes in Southern half of the N.W. quadrant with E.W. digonal as one of the sides are shown in illustrations in Chapter IV.

The area to be sampled as sample plot will be laid olt by joining the centre of the plot to the mid point of NaW. si de of the plot.

On oadh sample tree a sample tree card will be attached facing the centre of the plot and the deta will be collected as detailed below:-

1. Job No, (col. 1-3) Same as given in plot description form.
2. Card Design (∞ 1.4-5)
n
3. Sample Grid No. (col.6-9)
n
4. Grid reference (col. 10-21)
5. Species
6. Serial No. (col. 22-23)
7. Species code (coln 24-26)
8. Dominance (col.27) The

Actual grid coordinates be given in six digits two for degree, two for minutes, two for seconds, for latitudes and longitaded

Local nane.or the botanical name of the tree will be written in the space provided.
Two difit code number wil be written for each sample tree.

Three algit code number will be written for each speat es as per Appendix I-d.
position of the tree in the canopy will be detemined accoraing to one of the following dilasses:

Code
1
2 Codmminant
3 Dominated
4
5 Tree of understorey
6 Solitary
7
Item
Predominant

Suppressed

Other (abnomal and damaged trees)
10. D,B.H. (col. 28-30)
11. D.B.T. (Col.31-32)
12. Total height
13. Clear bole
(Col. 35-36)
\because
-14. Grown Width ($37-38$)
15. a) Form and Defects (col. 39-40)

Diameter at breast hei cht will be measured as per instructions already git ben above and the diameter wili be recorded to the nearest centimetre in thee digit numbero

Double bark thi ckness will be measured with the halp of baris gauge at two point opposite to each other at D。B.H. and recorded to the nealest milimmere in two digit numbero

Total. haight oin the tree wiul be measiared with biumeleiss hypsomett r and recorded to the nearest metre in two digit numbero Tbtal haight recorded will be that from the ground level (or one upaill side) to the tip of the crown While measuring the h eight'of the tiree standing on the slopping ground of stope coriection is given. The height of the leaning tree will also be onrrected,

The lengtin: between the ground level and the first live; branci(the branch from where the actual crown starts), will be measured with the help of Blumelel ss hypsometer and recorded to the nearest neter in two digit numberc Similar corrections, if needed, will also be•done as in the mocsurements of total height.

The crown width in metres; averege common wi dth will be recorded.
Following fouritens for each sample tree will be described in order to indicate the ruality of the stem, All theseitems refer to the length of clear bole only.
This iteln indicates whether the axis of the ster runs in a stivight, line or not. The information will he collected in: the following- classes:-

Description
Complete bole in a straight line form.
Axts of the bole deviates slighty from the Straight line forn (Say less than 10 degrap).
\because
Axis of the bele undergoes one pronounced bend (more than 10 degree)
Axds"of the bole undergoes many pronounced benda

BAMBOO ENUMERATION FORM

Bambon gulms cver 2 mts. long will be cnumereted, culms under 2 an. $d_{0} b_{n} h_{n}$ will be considered as unutilisable but will be enumerated. The utilisable culms will bo enimberated tin the same way as for Tripura, except that; diametcr alassifi sation will be done for clump forming bambos also.
(a) Nom cinp forming bamboos

Enumeration of these whll be confined to the Nortinern half of the plet as illastrated in Napter IV。

Farh culm present in the northem half of the NoHm cuadrant will be analysed by age class toe current season, 1 to 2 seaconc and over 2 seasons old. The current seasons bamboo will not be further classified in to diameter classes. The others will be di videdinto 4 dias classes and soundness.
(b) In the case of clump forming bamboos the anazyis of bamboo clumps by ago and dianeter classes will be done in the antire N.W. Quadrantiten of the total plot area, The enumeration will be carried out in the entil re plots,

1	Job No, (coll 1-3)	-	As for plot description formo
20	Gard design($\operatorname{col}_{\text {c }}$ 4-5)	\cdots	- Co
3.	Sample Grid No. (col. 6-9)	**	$\cdots \mathrm{dom}$
4.	Species (sol, 10-12)	\cdots	The species code will be given in 3 digits. The same form will be used for both Muli and clump forming Bamboos. Each clump will be recorded for a separate line on the form.
5.	Glump analysia	-	The form has been redesigned for Manipur Survey and is very different, from that used in Tripura. All the green sound culms are first, analysed, by age and dia. classes, then the green damage d, finally the dry sound and then -decayed bamboos. The clump total serves as a cheok. The count should be made independently for the totel namber of bamboos and the total should not be arrived at by merely adding each soparate alass.

77 -
 BAMBOO WEI GHT FORM

The weight of bamboo culm hos to be determined by length and diameter classes. In Manipur survey we are classi fying clump forming bamboos also by diancter classes. The weight of switchy culms ite. below 2 an. dia. will not be necessary.

From each diameter class of each species 2 mature calms whll be cut at 25 cm . from ground 1 evel and weighed to the ncarest 5 grammes on the spot. If mature culms are not avalable youngtr culms will not be weigh $\in \mathrm{d}$.

Iten 1. Species code I (col. 1-3) The'species of bamboo will be recorded in 3 digit code.

Item 2. Sample calm No. 1 - 1 . (col. 4-13)

Item 3 dry weight
correlation.

Actual diameter in cm. col. 4m5 the actual diameter of the culm to the nearest cm . at b.h. will be antered in 2 dHgit code.

1i). Length in decimeter will be recorded in 3 digit code. The length of bamboo down to 2 cm . dia. at, top end will be recorfed. A decimeter is $1 / 10$ of meter. Therefore a bamboo which is. 6 m . and 68 cm . will be considered as 67 and in 3 difit code will be written as 067. A bambeo which is 11.33 m . will be recorded as. 113 in 3 digits.

1i1) Wefghtin grammes (ol. 6-43) the weight of the culm will be recorded to nearest 5 grammes. in ω difit code. If a bamboo wedgha. 6.475 kg . it will be recorded as 06475 if one welgh 13.422 it will be recorded as 13420.

Col. No: 4-23 are for diameter class 2 to under 5 cm . Col. 24-43 are for dia. class 5 to under 8 cin Col. 44 to 63 are for dia. class 8 cras. and over.

- This stídy will be done as for Tripura. From sample culm No. 1 of each diameter class out 3 pleces of one meter Iength each one from the bottom, one from the to p and one from the midyle Ihe wi th bamboos strips of the same species, and record their green weight to the nearest. 5 grammes in 4 digit code, col. $64-67,68-71$ and $72-75$.

The weight sample will always be from the first sample culm of each तia. class. The species code, grid No. and dia. class of the sample will be written on the largest piece of each bundle and if possible on other also to facilitate the identification of pieces in case, they were to loos-e.

Code No. Botanical name		Popalar Hincli Name。	Vernacular Name		
		B engali	Mand puri		
	1a_- 2		3	4	
001	- Tectona grancis	Teak	Segun	Chingsu	
002	'Shorea robusta	Sal	Sal	Sal	
003	Teminalia tomentosa	Saja	-	Mayokpha	
004	Pterocarpus marsupium	Bija	-		
005	Dalbergia Iatifolia/ Shi ssoo	Shi sham	Sissoo		
006	Ougernia calbergioides	Tinsa			
007	Diospyros malanoxylon	Tendu	Kendr		
008	Bridelia retasa	Kasal	Kanta-Ku1	Kuhi	
009	Anogeissus latifolia	Dhaunda			
010	Emblica officianalis	Aonla	Amlaki	Keikra	
01.1	Phyllanthus emblica Chloroxylon sfecitenia	Bhirra			
012	Lagesstroemia parviflora	Landia	Jarul, Sidia		
013	Temmalia arjuna	Arjun			
014	Sy zigium ouminit	Jamun	Jom, Kala	Jam	
015	Hardwi ckia binnata	Anjan	Vareppa		
016	XyIia xylocarpa	Tangan			
017	Mangifera indica	Am	$\mathrm{Am}^{-} \mathrm{H}$	H efnou	
018	Boswellia serrata	Salad			
019	Schrebera swi etencides	Mokna			
020	Lannea grandis	Mo do		Alman	
O21.	Garuga pinnata	Kekad	Kajikara		
022	Careya arborea	Kumbhi	Kum(Kumi ra)	Larong	
023	Gmelina arborea	Siwne	Gamar	Wang	

OE4	Schlatchera oleosa/Trijuga	Kusum P	Pome,markatya	Kıa sura
- 035	- Madnüca latifolia	Mahua		
-0\%	Terminalia bellerica.	Behere B	Bahera	
027	Adina cordifolia	Haldu H	Haldr	Tinghnopthing (Kuki)
028	Mitragyne parviflore	Mandil		
029	Mallotus philippinensis	Sinduri		$\begin{aligned} & \text { Urai rom } \\ & \text { lata } \end{aligned}$
030	Terminalia chebula	Harre	Haritaki	Mianahie
031	Acacia leucophloea/ lontioularis	Sabedoabul		
032	Salmalia malabaricum (Bombex cliba)	Semal.	Simul	Tera
033	Sterralia urens	Kullu		Prijag(Kuki)
034	Aegle marmelos	Bel		Harikhagok
035	Albi mżia lebbek	Kala Siris		U11
036	Albizzia procera + adoratissma + amara	Sabod Siris	s K̇erai	Kham
037	Bauhinia malabarica	Amta $\{$	-	:
038	Baminia parpurea	Kachnar ,	,	Chingth reo
038	Bauhnia recemosa	Apta	- :	n
040	Bauhinia retusa + Variegata	Sehra)		
041	Bischofia javanica	-	Urium	Uthumanaraobi
042	\therefore Buchanania lanzan + latifolia + angustifolia	Achar		
043	Butea monosperma	Palas	Palas	Pangong
044	- Caseria tomentosa	Gilchi		
045	7 Caseria gravolens	Gilchi		-
046	Cassia finstula	Amaltas	Sonal	Chehai
047	Cochlospermum gossypium + + religiosum	Galgal		
048	Cuchlospermum tomentosum	-		

075	Soymi da febrifuga	Rohan	r	
0.76	Tamarindus indica	Imli	Tetul	Mange
077	Vitex peduncularis	-	A weal	-
078	Wrightia tinctoria	Dudin		
079	zis zaphus xylophym	Ghont	Kul	
080	zil zyphus ju jubea	Ber	-	Bomil
081	Azalirachta in tica	Neem	-	Nerm
082	Mimusops el egni	-	-	Bokul
083	Strychnos nuxvomica	Kuchla		
084	Galy carpa arborea	-	$\begin{aligned} & \text { Banmala } \\ & \text { (gochla-Nel) } \end{aligned}$	Saiom
085	Gymon sporia spp.			
086	Mimosops hexan dra	Khimin		
087	Manilkara h oxandra	-	-	
088	Wendlendia exerta	-		
089	Spondas mangi fera	Amra	Amo ra	Heining
090	Aquiaria agallocha	-	Agar	Agor
091	Spondias species	-	-	Heing
092	Anthocephalus cadamba	Kadam	$\begin{aligned} & \text { Kadam } \\ & \text { Kaimal. } \end{aligned}$	Keli
093	Trema orientalis	-		
094	Milusa velutina	-	,	
095*	Corrina mixa	Semri	Aichla	Lamuk
096	Erythrina inctica	Pangra	Mandar	Kur raoangouha
297	Erythrina suberosa	Pangra	Mandar	Kurao
$098=$	Miscellancous spp.]	-		
099	Bursera serratum	\cdots	Neur	Kalamp
100	Xanthoxyl-um inetsa	Phetsa	-	Mukth rubi
101	Sterospermum chelnoides	-		Mixi
102	Cedrella toona/Mi crocarpafabrifuga	Hin	Poma (rangl)	Hanur Pai ren

103 Polyalthia acerasoides	$-82=$	
104 Zanthoxylum budrunga	- Bajna	Ngang
105 Cephalostachyum pergracile	-	
103 Ginamonium wightii	-	
107		
joe Mangifera sylvatica	Lakshmi	Ban dam
109 Jonesia asoca	Asoka	
I.10 PIectronia dydima	-	
111 Macaranga denticulata	Bhara	Lakoi
1.12 Phoebe goalparensis	Bansum	Unigthou
115 Ferronia elephantum	Kaweet	
114 Galycarpa spp.	- -	Saiom spp.
115 'Baraktangenos kurzii	Chalmugra	
116 Anogei ssus acuminata	-	
117 Holoptelia integrifolia	-	
118 Macaranga peltata	-	
110 filanthus exelsa	Maharukh	
120 Oroxylum indicum	-	Samba
121 Sapindus enarginatus	Ritha	Kekru
122 Pterocarpus sentalenus	Raktachandan -	
123 Santalum album	Chandan	
124 Acacia sundre	Sundra	
125 Gi votia rotilerifomis	Punki	
126 Gyrocarpus americanus	-	
127 Dichrostchys cinerea	Yeltur	
128 Dolichandrone falcate	Medsing	
129 Melia azadi rach ta	Bakain Goraneem	Selzrak
130 Artocearpus chaplasta	- Charal	Cham
131 Acacia ferruginea	Velsundra	

200	Dendrocalamus hamsltonis	п	Procha	Unap
209	Dendrocalamus longi spathus	"	Rupai (orah)	
210	Dendrocalamus strictus	1		
211	Bambusa kingiona	n		
21.2	Bambusa vulgaris	"		
213	Bambusa khasiana	n		
214	Cephato stachyum fuchsianum	7		
215	-do- latifolium	n		
216	-do- Pallidium	n		
217	-do- Pergracile	\#		
218	Bambusa arundinacea	\%	-	Sanelbi
219	Undetermined bamboo			
220				
22.1				
222				
223				
224				
225				
223				
227				
288				
229				
2.30	*			

ه1	2	3.		4.5
		CHNE		-
231	Calanus tenuis	Cane	Raugi-Fali	
232	11 Leptrospadix	n		
233	\% Latirolus	1		
234	n flaribundus	1		
235	" erectus	\square		
236	Daemono rops jenkinsianis	18		
237	.			
233				
239				
240	-			
241	Ch rysorhyllum roxbu rghii	-	Pitako re	- .
242	Gitrus, hystrix	-	Satkora	Hel ribob
243	Gamellia thea	-	Jaugli cha	Cha
244	Dy soxylum binectariferum i. hamiltoni	-	Rata	Ungang
245\%	Deimycarpus racemosus	-	Kuki jawa	-
243	Diospyros toposis/Lancedefolia	-	Golal	Thingbong (Kuki)
	罥 dospernom chinense	-	-	Thingai veng (Kuki)
2.48	Elaeocarpus varunna	-	Baltoi	Chonshonmanbi.
249	Echinocarpus assemicus	-	Sita	Phaithing (Kuki)
250	Eriobotrya bengalensis	-	-	Ging-neitei
251	Ficus elastice	-	Pubber	Parbber
252	Gi rronni era subacgualis	-	Dud Champa	-
253	Gynocardia odorata	-	Dal Murga (Chalmarga)	

MANIPUR SURVEY
List of Herbarium specimens got i lentified th rough F.R.I. and edditional Code Nos.

81. Trignostemon semperflo rens
82. Vvaria kamiltonii
83. Vitex spp.
$:$
84. Wendlenct-a walli chii
85. Xerospermum glabratum

Goigthing 334

Tinncur 344
Tasa 364

Spoti thing $\quad 362$
Thingsakti (K)

Pre-Investment Survey of Forest Rosources
CETTRIL ZONE - MLNTPUR SURVEY
PIOT APFROLCH FORM

1. Name of Division and its Gode No.
2. Nane of Range and its Code No.
3. Narie of Block and its Gocio No.
4. Stretur Codo

-

5. Compartment No. ..
6. Date ..
7. Name and Godo No. of the Grew Lordor: (1) Name No.
8. Name of the camp site
9. Tine of starting from camp ..
10. Distance covered by vehicle (kn) TH me taken by vehicle.
11. Name, if any, of the place up to which journey was performed by veluicle.
12. Gonspicuous features observed during the journey by vohicle (Describe in dotails)
13. Direction and distanco covered on foot up to the referenco point (km).
14. Time of starting on foot.
1.5. Gonspicuous Peatures obsorved during the journey on foot (Describe in details)
15. Descrintion of the reference point (Describe in details).
16. Time of arrival at reference point.
17. Bearing rrom the roforence point.
to the plot No..
18. Distance of the plot from reference point (km)
19. Time of arrival in plot
20. Tine of leaving plot
21. Timo of return to camp
22. Renarks, record the presonce of Permonent Roads, Teraporary Roads, Lake, Nallas, Railway Line, Fire Iine and Derarcation Liness, any other item of note, etc.

Signature of Crew Leader.

jgite terece.

Appendix II-9

-98-
Fre- Investment Survey of Forest Resources, Contral Zone, Nagpur.

SAMPLE TREE CARD

1. S.No. of Tree
2. Epecios
3. Dominance
4. D. B, H.
5. Double Bark Thickness
6. Total Height
7. Clear BoJe
8. Form:

Longitudinal
Sectional
9. Nefect:

Natura?
end
Othor

BAMBOO ENUMERAT TON FORM

-i01- Appendix II_h.

PRE DNVESTMEIJT SURVEY OF FÓREST RESOURCES GENTRLL ZONE
MLNTPUR SURVEY
Form for recording of serial observations: ,

ate		Name of Crow Le	
Grid point.	Land uso	Vegetation	Forest Type
1. Ref:alphabot $a-m$ 2. Iat. Nos. $00=23$ 3. Long. Nos. $\quad 00-23$ Ref.alph. Iong. Iat.	Forest -1 ly.Tr. I. -2 Cur. Jhum -8 Pasture \& Barr. 5 Crop Land -4 Others -9	$\begin{aligned} & \text { Tree Forest }-1 \\ & \text { Open Forest }-2 \\ & \text { Bamboo Brake }-4 \\ & \text { Grass Bank }-5 \end{aligned}$	Wet Tornp. \because -1 Pine -2 Wet Hill -3 Sami Everg. -4 Teak Gurjan -5 Undetormined -6

MANF FUR SURVFY

App. III $_{\text {a }}$

$$
\text { Table - } 1.1
$$

Distribution of area by land use

MANIFUR SURVEX
ADP. III-b
Table - 1.2
Distribution of Forest Àrea by Vegetation

Vegetation	Area in Sq. km.	```Percent of Forest Area.```	S.E.\%	Percent of Tbtal area.
Tree Forest	7621.44	50. 29	2.1	34.08
Open Forest	4118.51	27.18	3.1	18. 41
Bamboo brake	3688.43	21.56	3.6	14.61
Grass bank	146.57	0.07	18.2	0.66
- . - .natal	15154.95	100	..	67.76

ApD. III-c

Distribution of Tree Forest and Open Forest area by Forest Type

Forest Hpe	Tree Forest (Area in $\mathrm{Sq} . \mathrm{Km}_{.}$)	Percent of total tree Forest.	S.E. $\%$	Open Forest (Area in $\mathrm{SC}_{\mathrm{a}} \mathrm{km}$.)	Percent of Total Open Forest.	$\underset{\%}{\text { S.E. }}$
Wet temperabe	1884.90	16.86	6.0	166.11	4.03	17.1
Pine	1519.40	19.94	5.5	923.37.	22.42	7.1
Wet Hilla	3918.20	51. 41	3.2	2672.39	64.89	4.0
Semil Evergreen	439.70	5.77	10.4	205.19	4.98	15.4
Teak Gurjan	459.24	6.02	10.2	151.45	3.68	17.9
Total	7621.44	100	-	4118.51	100	-

- MANI FUR SURVEY

VEGETATE ON - OPEN FOREST
ADD. IV -b.

[^2]

$$
-108
$$
VEGETATI ON. TREE KOREST - FOREST TYPE-PTNE Distribution of Stems per hectare by Dismeter Ciesses and Species

SPFCIES	DIAMETERGLASSES (G)										
	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-99	Iotal	\%
				4.762	3.333	-	-	. 476	-	01.427	23.6
Pinus kesiya	13.809	25.714	13.333	4.762	3.353	-			-	1.429	. 6
Albizzia procera	1.429	\cdots	-	-	-			-	-	1.905	.7
Grewla tilliaefolia	1.905	\cdots	-	-	-	-	-	-	\cdots	2.857	1.1
Galycarpa e rborea	2,857	-	10	-	-	-	-		-	67.619	26.0
Miscellancous species	54.762	9.048	3.009	-	-	-	-	-	-	. 952	. 4
Macaranga denticulata	. 952	-	-	-	-	-	-			5.237	2.0
Schemia wallichii	3,809	-	. 952	-476	-	-	-	-	-	5.237 52856	20 0.3
Castanopsi s hystrix	42.857	5.714	3.333	. 652	\cdots	-	-	-	-	52.856	x_{6}
	11.905	-	. 952	-	-	-	-	-	-	12.857	5.0
Castanopsis indica	11.905	- 190	. 2.381	. 476	\cdots	-	. 476	-	\cdots	16.666	6.4
Quercus semi serrata	7.143	6.190	2.301	-476	-	-	. 476	-	. 476	-952	04
Alnus nepal onsis	\sim	-	\cdots	-	-	-	44	-	- 47		
Bridelia retusa	2.381	2.381	-	-	-	-	-	-	-	4.762	. 8
Salix tetrasperma	8,571	3.333	. 952	\cdots	-	-	\cdots	-	-	12.856	4.9
Rest of species	13.333	1.905	1.428	. 476	-476	*	-	-	-	17.618	6.8
TOTAL	" 165.713	54.285	97.140	7.142	3.809	- -	. 952	. 476	. 476	259.993	-
PERCENTAGE	63.7	20.9	10.4	2.7	1.5	-	. 4	*2	. 2	-	100,0

ッรण

उन $\overline{\mathrm{A}} \mathrm{day}$

-111-

species	II AMETEEK GLASSES (Gm)					
	10-19	$20-20$	30-39	40.49	Total	8
Ficus spectes	2.000	-	-	-	2,000	3.4
Mi acellaneous speci	2.000	4.000	-	-	16.000	27.6
Castanopsis hystrir	2.000	6.000	-	-	8.000	13.8
Quercus semiserrata	14.000	2.000	\cdots	-	16.000	27.6
Rest of species	14.000	-	-	2.000	16.000	27.6
Total	44.600	12.030	. -	2.000	58.000	
Percentage	75.9	20.7		3.4		100.0

--113
MANLPUR SURVEY
Table - 3.2.2a Aop. VI-b
VEGETATION-OPEN FCBEST-FOREST TYPE-FINE
IT STEIBUTION OF STEMS PEF HECTAFE BY DI AMETEK CLASSES AND SPECI ES

Species	IIIAMETER OLASSES (Cm)				
	10-19	20-29	30-39	Total	\%
Pinus kesiya	3.333	-	-	3.333	8.3
Albizzia lebbek	6.667	-	\sim	6.667	16.7
Grewia tilla aefolia	3.333	-	-	3.333	8.3
Calycarpa arborea	3.333	$=$	-	3.333	.88 .3
Rest of species	16.667	3.333	3.333	23.333	58.4
Total	33.333	3.333	3.333	39.399	
Percentago	83.4	8.3	8.3		100.0

-114-
MANJPUR SURVEY
TABLE: 3.2. 3
VEGETATION-OPEN FOREST: POREST TYPE -WET HLLLS

| TOTLL | 20.908 | 9.090 | 4.545 | 1.818 | .909 | - | - | - | .909 | 0 | 38.179 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PERCENTAGE | 54.7 | 23.8 | 11.9 | 4.8 | 2.4 | - | - | - | 2.4 | - | 100.0 |

-115m
MANTPUR SURVEY

-116-
MANIPUR SURVITY

व-IIIA $\cdot \mathrm{day}$
 Vegetation-Tree Forest, - Forogt Trpe -Wet Temperate Distrebution of Volume $\left(M^{3}\right)$ per hectare by Diameter Classes and soecies

$\stackrel{-118-}{\text { MANTPUR SURVEY }}$

TABLE: 4.1.2.

 TEEGDiTTON-TREE RORST, WORSST TYPE - RINEDistribution of Volume (M^{3}) per hectare by Diameter Classes and species.,

VEGETATON-TREE TORERT, FORESTM TYPE-WET HLLLS
IISTRIBUTION OF VOLJME (M ${ }^{3}$) PEE HETAFE BY II MMETER CLGSSES AND SPECTES

[^3]$\stackrel{-120 \ldots}{\text { MANIPUR SURVEY }}$
ADD. VIII- 8 Table - 4.1040 - . Vegetation-Tree Forest, Forest Trpesesiai Evergreen
Distribution of Volume per hectare by Diameter Classes and spectes

Species	\because			DIAMETER CLASSES (Gm)								
	$10 \div 19$	20-29	80-39	-40-49	5C-59	6C-69	70-79	80-89	90-99"	$100+$	Total	\%
Pinus kesiya	. 073	-	-	-	-	-	-	*	-	-		0.1
Cmelina arborea	-	.423	-	- -	-	2.331	-	-	\%		2.754	2.8
Albi zzia procera	.116	-	-	-	-	-	-		-	-	. 116	0.1
Fl cus species:	,012	-	-	-	-	, -	- a -	-	-	-	. 012	0
Kydia calycina	-287	-276	. 699	\bigcirc	-	-		-	\therefore -		1.252	1.3
Calycarpa arborea	. 058	. 322	-	-	"	-	-	-	-	-	. 380	0.4
Mi scellaneous species	2.611	6.129	12.047	4.254	1.611	10.667	2.572	-	-		39.931	40.7
Macaranga dentioulata	. 280	- -	-	-	-	-	-	-	-	-	- 280	0.3
Schemia wallichil	-	.300	-	-	-	-	-	-	-	-	.300	0.3
Castanopsis hystrix	0,007	-	\div	-	-	-	-	-	-	-	0,007	0
Castanopsis indica	\cdots	-	, 320	- $\quad \therefore$	-	-	\cdots	-	-	-	. 329	0.3
Salix tetresperima	--	.176	-	-	-	-	-	-	-	-	. 176	0.2
Rest of species	2.005	5.455	9.121	4.777 .	4.457	2.176	5.747	4,168	-	14.669	52.485	53.5
...												
Total	5.440	13.131	22.186	9.031^{\prime}	6.068	15.174	8.319	4.168	-	14.565	998.095	
Percentage	5.5	13.4	22.6	9.2	6.2	15.5	- 8, 5	4. 2	-	14.9		100.0

-122-
 MANLPUR SURVEY
 App. IX-a
 Table-4.2.1.

VEGETATLON-OPEN FQREST, FOREST TYFE-WET TEMPERATE
IISTREBUTION OF VOLUME (M3) PER HECTARE BY II AMETER CLASSES AND SPEICES

\therefore Species	DTAMETEK CLASSES (Cm)					
	10-19	2)-29	30-39-	40.49	Total	\%
Fians spectes	-019	-		-	-019	0.3
Miscellan enus specte	es. 378	. 970	-	-	-1. 348	23.8
Castanopsis hystrix	. 048	1.298	-	-	1.346	23.8
Quercus semi seerata	- 331	. 352	-	-	.683	12.1
Rest of species	. 210	c	-	2.027	2. 267	40.0
Tbtal: -	1.016	2620	$=0$	2.027	5.663	
.-. . Eercentage. ..	17.9 .	46.3		35.8		100.0

$$
\begin{aligned}
& \begin{array}{l}
-123- \\
\text { MANLPUR SURVEY } \\
\text { Table - 4.2.2. }
\end{array} \quad \text { too. IN-b }
\end{aligned}
$$

VFGETATION-OPEN FOTEST, FOREST TYPE-PINE
MISTRIBUTION OF VOLUME (M3 ${ }^{3}$ PER HECTAEE BY_DIAMETER CLASSES AND SPECIES

Species		- IIAMETER CLASSES (Cm)				
	10-19					
Pimus kesilya	. 190			. 190	3.6	
...Gmelina arborea	. 145	-	-	. 145	2.7	
Grewia thliaefolia $-152 \ldots-152^{-15}$						
Rest of spectes ... 709 _1. 302 ... 2813 4.824 90.3						
\because Bbtal - Percentage	1.227	$\therefore 302$. 813	5.342		
	23.0	24.4			100.0	
- n						

$-124!$
MANIPUR SURVEI
Table -4.203.

Species	- DIAMETERCLASSES (Om)									
	10-19	20-20					770-79. 80-89	Iotal	$\%$.
Plasis speci es ${ }^{\circ}$.053	-	-	-	-	-	- -	.053	0.6	
Grexia tilliaefolia	. 866	-	\cdots	-	-	-	- -	. 086	0.5	
Calycarpa arbora	. 117	. 068	-	- -	-	-	- -	. 185	2.1	
Miscellaneous species	. 268	. 589	. 225	. 736	-	-	- -	1. ${ }^{\text {d }} 816$	20.0	
Macaranga denticulata	. 395	. 186	-	-	-	-		. 581	6.4	
Schemia walli chil	.044.	. 093	-	-	-	-	- -	. 137	1.5	
Castanopsia hystrix	. 048	-120	0	. 503	-	-	- -	. 671	7.4	
Castanopals indica	. 024	0	\bigcirc	0	0.	0	0	. 024	0.3	
Alnus nepalensis s .	. 086	-	-	-	-	-	- -	. 086	0.9	
Rest of species	. 331	1,256	. 878	. 597	.-		- 2.371	5.433	59.9	
Ibtal	$1,450$	2.312	1.103	1.836	-	${ }^{7}$	- 2.371	9.072		
Percentage	16.0	25.5	12.2	20.2	-	-	- - 26.1	-	100.0	

$\begin{aligned} & 0^{\circ} 00 \mathrm{~T} \\ & -\quad 92 \end{aligned}$	$9290 \mathrm{LIT}$	$\begin{array}{r} 8^{\circ} 0 \\ 380 T 0 T \end{array}$		$\begin{array}{r} \varepsilon^{\circ} 0 \\ \varepsilon T 8 \varepsilon \end{array}$	$68 \pi t$	$\begin{gathered} 248 \\ 78 \angle 984 \end{gathered}$	$\begin{gathered} \Gamma T \\ S \in s e x \end{gathered}$		$\begin{array}{r} g^{n} S T \\ S \nabla 9689 T \end{array}$	$\begin{gathered} \varepsilon^{4} 6 \mathrm{~V} \\ 3 \log \dot{z} z \end{gathered}$	$\begin{array}{r} 0 \times 63 \\ \approx 36633 \end{array}$	［37CT
7＂08	Sç 8607	ZE®TOT	－	¢T88\％	98949	¢TE\％	zetot	807697	cesers	088086	T09438\％	co poods． 5
$8{ }^{\circ} \mathrm{O}$	8TEse	－	－	－	－	－	\cdots	；－	－	\＆TES¢	＂＇	
\＆ 0 －	\＆TE\％	－	－	－	－	－		\cdots	E18\％	．	－	E0 Tput 5 tsidou
\＆0	8T888	－	－	－	－	．－	－	－	－		2Tcc．	x－7 7^{5} Su stsdou
\＆＇0	¢T\＆\％	－	－	－	－	－	－	－	\cdots	Eteqs	\cdots	тт近边 з
0＇9	68054	－	－	－	－	－	－	\cdots	－	－	$68 \% 0$	
$8{ }^{\circ}{ }^{\circ}$	939\％もこ	－	－	－	¢78\％	OtT59\％	\＆Tgic	807697	ஏ89¢78	3657 To	T 30034	posds s nosur
$4^{\circ} \mathrm{T}$	T2608	－	－	\cdots	－	－	．•	－	\ldots		¢6¢\％	wroque ed deo
2＇9	¢9L809	－	－	－	$\cdots \cdots$	－	－	－	3929	\％9L9	TTE8 47	טu¢̧ofteo
$8 * 0$	8788¢	－	－	－	－	＊	\cdots		－	－	STEE	¢9 Toods s
$9{ }^{\circ} 0$	96929	－	－	－	－	－	－		－	－	98949	
$6^{\circ} \mathrm{O}$	68\％ $20 T$	－		－	－	STE\％	$?$	－	＊	96949		\％\％apate bu
	380705	\cdots	－	－	－	－	－	－		－	zentoit	®Кря
\＆${ }^{\frac{7}{2}}$	[enat	$60 T+005$		$\frac{68-08}{(45)}$	$\frac{6 L-0 L}{\text { SभSSFTO }}$		$69 \cdots 09$	$6 \pi=0 \pi$	$-6 \varepsilon \sigma_{2}^{2}$	$60-\infty$	ジと!	¢9 To3ds
पन ＂包 OL68t：baxy unfents －6ちた												

			stributio	etation= of Tota		SURVEY $5.1 .5$ Forest neter Cla	Teak cs and	AOP. XI ratum Area riane pectes.	$45924 \mathrm{ha} \text { 。 }$
SPECIES	10-19	20-299	30-34	D-I 10.49	$\frac{\text { M E T }}{\text { 50-59 }}$	$\frac{C L A}{60-69}$	$\frac{\mathrm{ES} \text { (G) }}{70-79}$	Ibtal	\%
Gmelina arborea	\cdots	51022	"				-	51022 51022	.3 .3
Calycarpe arborea	-	51022	"	757197	51028	-	-	5510843	38.0
Miscellaneous species	3826991	$117359 C$	102043	357197	51022	-	-	51022	. 3
Michelia champaca	-	-	51022	\square	"	-	-		
Dipterccarpus turbinatus	561284	408219	51026	153065	51022	51022	\cdots	1734874 51622	12.0 .3
Schemia wallichil	51022	\because	\cdots	-	-	\cdots	-	1683853	11.6
Castanopsis hy'strix	1479766	204087	-	-	-	-	-	51022	.3
Gastanopsis indica	51022	-	-	-	-		-	1173636	8.0
Lagerstrocmia floreginae	867460	306176	\cdots	102043	-	-	-	459240	3.1
Tupercus species	357197	-	-	102043	-	-		765417	5.2
Bridella retusa	765417	-	\bigcirc	-	-	-			
Rest of specios	18.36963	714395	1.53065	51022	15365	-	102043 i	010553	
Iotal	9797122	2008511	816392	663327	255109	51022	102043	14593526	\square
Percentago	67.1	20.0	5,6	4.6	1.7	.3	.7	\cdots	100.0

-131-
MANIPUR SURUEY
Table -5. 2.1.
Vegetation 0 Oph Forest. Fort st Type-Net Temperate
Distribution of ibtal Stery prigneter classes and Species
-132-
MANIPUR SURVFY
Appe XII-b
Mble - 5.2.2.
Stratam Arca 92357 ha.
Vegetation - Open Forest, Ferest Type - Pine
Distributi n if Total. Stems by Diameter Classes and Species

$\frac{-133-}{\text { MANEUK SURUEY }}$	
TABLE: 5.2.3.	Stratum Area : 267239 ha .
Vegetation -0pen Forest	
Forest Typowet Hills.	

Distrybution of Total Stoms by Diamoter classes and Speciegn

Species	DIAMETERCLASSES (Cm)										
	10-19	20- 20	30-39	40-49	50-59	60. 69	70-79	80-89	90-99	Iotal	\%
Pinus kesiya		78761	485040	24\%20	-	-	-	-	-	1457521	14.3
Tr ${ }^{\text {ars spaci }}$	788761	-	-	-	-	\sim	\cdots	-	-	728761	7.1
Heus spocies								-	-	485840	4.8
Grewia tilliaefolia	242920	242920	-	-	-	-	-	-			
			-	-	-	-	-	-	-	728761	7.1
Calycarpa arborea	728761	-	-	-							
Miscellancous species	2672390	971681	-	-	-	-	-	-	242020	3886991	38.1
Schemia wallichli	485840	4858 ± 0	-	-	-	\cdots	-	-	-	971680	9.6
Eastanopais hystrix	485840	-	242030	*	-	-	-	-	-	788760	7.1
Rest oì species	242900	-	24:9 20	242020	-	-	-	-	-	485840	4.8
Quercus species	-	-	485840	\cdots	24:200	*	-	-	-	728760	7.1
Tbtal	5587432		1214600	48540	242920				242920	1020291	
Percontage	54.7	23.8	11.9	4.8	204				2.4		100.0

Spectes	10-19	20-29	$20-39$	- IEAMETER CLASSES (Cm) --...-		$\stackrel{\square}{4}$	
				40-49	50-59	$60-69$	$70-79$	$80-89$	90.99	100-109	Ibtal
Grelina arborea	12977	-	-	-	\cdots	\cdots	-	-	2-mb	-	$12977{ }^{*}$
Calycarpa arborea	-	-	42530	-	-	-	-	-			42950
Ky dia calycina	415385	1257143	2232394	773636	430569	1668310	517300	\%6909	90715	535417	94568-41
M1 scellaneous Species	6553	-	-	-		-	- 3	-	-	\%	-6553
Macaranga dent-iculata	61547	68031	-	-			238734	32148	\cdots	边:	"684593
Schenia Wallichii	58334	237192	335615	-	\checkmark		\cdots	-	-	-	631141
Castanopais hystrix	-	$-$	-				\% j	-	468730	-	468730
Gastanopts indica	3598	-	-	'			-	-		-	3598
Cuercus semi serrata	39575	52809	-	-"		-	-	-	-	-	92384
Quercus species	73496	123607	7275	-i		$-$	-	-	T1:	-	269828
Quercus species	7452	45742	52809	229868			-	-	$=$	\cdots	33587.1
Alnus nepalensis	\$3580	38161	-		-		m.	-	7	-	91741
Bridelia re-tusa	-	129132	545953	-	\because "	201886	238734	39664	447530	-	1959983
Salix tetrasperma	179115	208282	514344	235008	$\dot{\sim}$	390994	238434	- $-\cdots$	-	-	1766477
Rest of species	257	-	-	\cdots	- 官	--		_	.'.	m.	$\cdots 257$

		Dist		 cibution of Total Volume M^{3} by Diameter Classes and Species							
Speciis	\therefore..		" "M "METEK CLESSE (Cm)						-		
	10-19	20-29	$30-39$	$40-49$	$50-59$	$60-69$	$70 \Perp 79$	$80-89$	$90-99$	Total	\%
Pinus kesiya	134315	1054466	1234447	872137	993993	-	-	398337	-	4717745	51.8
Albizzia procera	15194	-	-	-	-	-	-	-	-	15194	. 2
Grewa tilligefolia	17169	-	\cdots	- .	*	-	-	-	-	17169	. 2
Calycarpa arborca	4406	-	-	- -	-	-	-	-	-	4406	0
Mi scellancus species	247359	$319986{ }^{\text {* }}$	344155°	-	-	-	-	-	-	911490	10.0
Macaranga denticulata	1367	-	-	-	-	-	-	-	-	. 1367	0 \%
Schemia wallichii	12003	-	97765	106358	,	-	-	-	-	186126	2.0
Castanopsis hystrix	200257	180049	27623	151029	-	-	-	-	-	818958	9.0
Gastanopsis inat ca	61536	*	86302	-	-	-	. -	-	-	147838	1.6
Queras seni serrata	60016	242193	181873	69133	-	-	- 290814	-	\cdots	844029	9.3.
Alnus nepalensis	-	-	-	-	-	-	265896	-	443058	708954	7.8
Bridelia retusa	5774	71716	-	-	-	-	-	-	=	77490	. 8
Salix tetraspema	43151	10544	61992	-	-	-	-	-	=	210590	2.3
Rest of species	67461	49684	113955	96178	127934	-	-	-	-	455212	5.0
Tbtal Percentage	870008	2023541	2408102	1.294835	112197	$-$	556710398387 6.1 4.4		$4430589!+6568=$		

Contents

Contents
$\stackrel{-138-}{\text { MANLPUR SURVFX }}$
 Veqetation-Tree Borestw. Ferest Type - Tesk curian
Hestibution of Total Volume by Dianeter Classos and species,

Species	- ${ }^{3}$				ITAMETER CLASSES (Cm)					
	10-19	20-20	30-39	40-49	50-59	60-69	70-79	Btal	\%	
Gmelina arborea	\cdots	10287	-	-	-	-	-	10837	0.3	
Calycarpa arborea	-	18084	- -	-	-	-	-	18094	0.6	
Miscellan oous spectes	144203	269023	58507	404453	86245	-	-	96221	2.4	
Michellia champaca	-	-	-30372	\cdots	-	-	-	30402	0.9	
Di.pterocarpus turbinatus	2163	107033	309804	1878 x	106819	139334	-	. 872419	26,6	
Schemita walli chils ...	5603	\cdots	-	\simeq	-	-	-.	$\therefore 5603$	0.2	
Castano-psis hystrix	48220	58605	-	-	-	-	-	107820	3.3	
Castanopsid inctea	459	-	-	-	-	-	-	. 459	0	
Lagerstroemi a floreginno	37061	78434	\cdots	-	-	-	-	113545	3.5	
queraus species	$>^{11894}$	-	-	106636	-	-	-	118530	3,6	
Bridella retusa	11619	-	-	-	-	-	-	11619	0.4	
Kest of species	47853	156509	80551	64477	282984	-	328926	102300	31.2	
Total	323632	699809	479264	763395	476048	139334	392026	3278608	-	
Porcentagc	10.0	21.5	14.6	23.3	14.5	4.3	12.0	-	100.0	

-139-

MANLPUR SURUEY	\because	Ano, XIV-a
Table -6.2 .1		$: \quad$ StratumArea

16611 he.
VFGETATEMAOEEN FORFST FORET TYPEWET TEMPERATE
DISTRIBUTI N OF TOTAE VOLUME BY M MMETER GLASSES AND SPEGES

Vegetation - Open Forest. Forest Trpe-Pine. Distribution of Total Volume by Diameter Clesses andspecies.

Species	19 IITAMETER CLASSES (CM)					
	-19	$20-29$	30-39	100-109	Total	\%
Pinus keesiya	17544				17544	3.6
Albizala Iebbek	13389				13389	27
Grewia tilliaefolia	14035				14035	28
Calycarpa arborea	2862				2862	0.6
Rest of speciles.*	65467	120222	259743	$\cdots \cdot$	445432	90:3
...-						
Tbtal	113297	120222	259743		49322	100.0
Percentage	23:0	24. 4	62.6		-	100.0

Contents

Contents

Contents

Contents

Contents

Contents

[^0]: (Romesh Ghandra)
 Chief Coordinator.

[^1]: The other form of cultivation is 'Pan Jhan'. Here the people grow 'Pan' vines after clearing the undergrowth and lopping the branches of trees big and small and using the trees for supporting the 'Pan' vines. Most of the low lying areas, with good tree growth are taken. up for 'Pan' Jhuning. The repeated clearance of undergrowth in such areas has greatly affected the natural regeneration of troo species.

[^2]: sa foods

[^3]: 0'00T

